Normalized defining polynomial
\( x^{21} - 189 x^{19} - 154 x^{18} + 14364 x^{17} + 22050 x^{16} - 563108 x^{15} - 1214079 x^{14} + 12183605 x^{13} + 33155136 x^{12} - 143285772 x^{11} - 476613326 x^{10} + 825207138 x^{9} + 3516028369 x^{8} - 1670183867 x^{7} - 12232226328 x^{6} - 1210816971 x^{5} + 16657769884 x^{4} + 4239732917 x^{3} - 4978400147 x^{2} - 940891777 x + 36861817 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(511602258272191839961280749067569616320187702761=7^{38}\cdot 13^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $187.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(637=7^{2}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{637}(1,·)$, $\chi_{637}(263,·)$, $\chi_{637}(456,·)$, $\chi_{637}(9,·)$, $\chi_{637}(464,·)$, $\chi_{637}(81,·)$, $\chi_{637}(274,·)$, $\chi_{637}(536,·)$, $\chi_{637}(282,·)$, $\chi_{637}(92,·)$, $\chi_{637}(354,·)$, $\chi_{637}(547,·)$, $\chi_{637}(100,·)$, $\chi_{637}(555,·)$, $\chi_{637}(172,·)$, $\chi_{637}(365,·)$, $\chi_{637}(627,·)$, $\chi_{637}(373,·)$, $\chi_{637}(183,·)$, $\chi_{637}(445,·)$, $\chi_{637}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{19} a^{11} - \frac{8}{19} a^{10} - \frac{6}{19} a^{9} + \frac{5}{19} a^{8} - \frac{4}{19} a^{7} - \frac{8}{19} a^{6} + \frac{9}{19} a^{5} + \frac{3}{19} a^{4} + \frac{5}{19} a^{3} + \frac{8}{19} a^{2} - \frac{4}{19} a - \frac{9}{19}$, $\frac{1}{19} a^{12} + \frac{6}{19} a^{10} - \frac{5}{19} a^{9} - \frac{2}{19} a^{8} - \frac{2}{19} a^{7} + \frac{2}{19} a^{6} - \frac{1}{19} a^{5} - \frac{9}{19} a^{4} - \frac{9}{19} a^{3} + \frac{3}{19} a^{2} - \frac{3}{19} a + \frac{4}{19}$, $\frac{1}{19} a^{13} + \frac{5}{19} a^{10} - \frac{4}{19} a^{9} + \frac{6}{19} a^{8} + \frac{7}{19} a^{7} + \frac{9}{19} a^{6} - \frac{6}{19} a^{5} - \frac{8}{19} a^{4} - \frac{8}{19} a^{3} + \frac{6}{19} a^{2} + \frac{9}{19} a - \frac{3}{19}$, $\frac{1}{19} a^{14} - \frac{2}{19} a^{10} - \frac{2}{19} a^{9} + \frac{1}{19} a^{8} - \frac{9}{19} a^{7} - \frac{4}{19} a^{6} + \frac{4}{19} a^{5} - \frac{4}{19} a^{4} + \frac{7}{19} a^{2} - \frac{2}{19} a + \frac{7}{19}$, $\frac{1}{19} a^{15} + \frac{1}{19} a^{10} + \frac{8}{19} a^{9} + \frac{1}{19} a^{8} + \frac{7}{19} a^{7} + \frac{7}{19} a^{6} - \frac{5}{19} a^{5} + \frac{6}{19} a^{4} - \frac{2}{19} a^{3} - \frac{5}{19} a^{2} - \frac{1}{19} a + \frac{1}{19}$, $\frac{1}{19} a^{16} - \frac{3}{19} a^{10} + \frac{7}{19} a^{9} + \frac{2}{19} a^{8} - \frac{8}{19} a^{7} + \frac{3}{19} a^{6} - \frac{3}{19} a^{5} - \frac{5}{19} a^{4} + \frac{9}{19} a^{3} - \frac{9}{19} a^{2} + \frac{5}{19} a + \frac{9}{19}$, $\frac{1}{19} a^{17} + \frac{2}{19} a^{10} + \frac{3}{19} a^{9} + \frac{7}{19} a^{8} - \frac{9}{19} a^{7} - \frac{8}{19} a^{6} + \frac{3}{19} a^{5} - \frac{1}{19} a^{4} + \frac{6}{19} a^{3} - \frac{9}{19} a^{2} - \frac{3}{19} a - \frac{8}{19}$, $\frac{1}{19} a^{18} - \frac{1}{19}$, $\frac{1}{24187} a^{19} + \frac{540}{24187} a^{18} - \frac{447}{24187} a^{17} - \frac{492}{24187} a^{16} + \frac{405}{24187} a^{15} - \frac{111}{24187} a^{14} + \frac{101}{24187} a^{13} - \frac{175}{24187} a^{12} + \frac{33}{1273} a^{11} + \frac{3476}{24187} a^{10} - \frac{7654}{24187} a^{9} - \frac{2008}{24187} a^{8} - \frac{7}{361} a^{7} + \frac{3563}{24187} a^{6} + \frac{1092}{24187} a^{5} + \frac{8771}{24187} a^{4} + \frac{4741}{24187} a^{3} + \frac{9359}{24187} a^{2} + \frac{9042}{24187} a + \frac{3142}{24187}$, $\frac{1}{1295733093361191493489266412889165176597456708254098528253123161077499571724279} a^{20} + \frac{8731016957371127602729241935862292939278565358298242203340072553989423986}{1295733093361191493489266412889165176597456708254098528253123161077499571724279} a^{19} - \frac{30758073285793130514892381467403071764237168455023958279240126957957044717662}{1295733093361191493489266412889165176597456708254098528253123161077499571724279} a^{18} - \frac{28529162642526814251755374017716260641153019656617609223751842999159900134908}{1295733093361191493489266412889165176597456708254098528253123161077499571724279} a^{17} + \frac{24607517393687086941213861083883877070371007747554593117520462433794108507361}{1295733093361191493489266412889165176597456708254098528253123161077499571724279} a^{16} + \frac{19194850951950062817572518239561669961087462038369298879305143293748750059654}{1295733093361191493489266412889165176597456708254098528253123161077499571724279} a^{15} - \frac{5270253149926619917144357005965542268553377340342482343799096439837004067368}{1295733093361191493489266412889165176597456708254098528253123161077499571724279} a^{14} - \frac{4881991170732712421490924094730040798532589336298412066832220966021082093600}{1295733093361191493489266412889165176597456708254098528253123161077499571724279} a^{13} - \frac{33518794200393671557344478393345589498835550446952779798507207446283827278259}{1295733093361191493489266412889165176597456708254098528253123161077499571724279} a^{12} - \frac{17006367092017504844939054619286639600717547086739972967494049999893637934131}{1295733093361191493489266412889165176597456708254098528253123161077499571724279} a^{11} + \frac{164847972506348976047992153552291247147329333566099345140342748674158990231025}{1295733093361191493489266412889165176597456708254098528253123161077499571724279} a^{10} + \frac{155146467485480907588387981760713762299335385533602236489304598140318823525264}{1295733093361191493489266412889165176597456708254098528253123161077499571724279} a^{9} - \frac{484650598535265642238879025496145104405659804464875721385606689030875106847639}{1295733093361191493489266412889165176597456708254098528253123161077499571724279} a^{8} + \frac{633293228859404141312148233575300241989709808176881624132469453495179047083057}{1295733093361191493489266412889165176597456708254098528253123161077499571724279} a^{7} - \frac{33251395375418820427337287804508062337803373299053237673044534765302389029436}{68196478597957447025750863836271851399866142539689396223848587425131556406541} a^{6} - \frac{293377531774699186522219993036052578941986491293630380275592760789519688595719}{1295733093361191493489266412889165176597456708254098528253123161077499571724279} a^{5} - \frac{606273291347905163503473210230262514657238194487743972246992781251545222069600}{1295733093361191493489266412889165176597456708254098528253123161077499571724279} a^{4} + \frac{591873597453074643854224601022961394027287732522649456182805506450677568784292}{1295733093361191493489266412889165176597456708254098528253123161077499571724279} a^{3} + \frac{107935264884802564660448636376212466299252154217166280802593829858127215395679}{1295733093361191493489266412889165176597456708254098528253123161077499571724279} a^{2} + \frac{142631472645387855385779397269646395740255713159647822228639844596603339292842}{1295733093361191493489266412889165176597456708254098528253123161077499571724279} a - \frac{517657264491999500822778522437796061880465286141651507819107143894285871430058}{1295733093361191493489266412889165176597456708254098528253123161077499571724279}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 108700043286586450 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| 3.3.8281.2, 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | $21$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | R | $21$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{21}$ | $21$ | $21$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | $21$ | $21$ | $21$ | $21$ | $21$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 13 | Data not computed | ||||||