Normalized defining polynomial
\( x^{21} - 3 x^{20} - 35 x^{19} + 103 x^{18} + 465 x^{17} - 1353 x^{16} - 2985 x^{15} + 8673 x^{14} + 9901 x^{13} - 29145 x^{12} - 17071 x^{11} + 52175 x^{10} + 14997 x^{9} - 49437 x^{8} - 6223 x^{7} + 23447 x^{6} + 1118 x^{5} - 4872 x^{4} - 114 x^{3} + 334 x^{2} - 6 x - 2 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(50434533500374375555123632117121024=2^{38}\cdot 809^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 809$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{12} + \frac{1}{4} a^{11} + \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{4} a^{15} - \frac{1}{2} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{4} a^{9} + \frac{1}{8} a^{8} + \frac{1}{4} a^{7} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{15} - \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{8} a^{9} - \frac{1}{2} a^{8} - \frac{3}{8} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{18} - \frac{1}{8} a^{14} + \frac{1}{4} a^{11} - \frac{1}{8} a^{10} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{6472} a^{19} + \frac{141}{6472} a^{18} - \frac{143}{3236} a^{17} - \frac{239}{6472} a^{16} + \frac{563}{6472} a^{15} - \frac{98}{809} a^{14} + \frac{43}{3236} a^{13} - \frac{473}{3236} a^{12} - \frac{2611}{6472} a^{11} - \frac{2341}{6472} a^{10} - \frac{703}{3236} a^{9} - \frac{689}{6472} a^{8} - \frac{469}{6472} a^{7} + \frac{591}{3236} a^{6} + \frac{609}{1618} a^{5} + \frac{1389}{3236} a^{4} + \frac{19}{809} a^{3} + \frac{751}{3236} a^{2} - \frac{1129}{3236} a + \frac{771}{1618}$, $\frac{1}{3569412670320173841184} a^{20} + \frac{24131607872250341}{446176583790021730148} a^{19} + \frac{174607700581853606405}{3569412670320173841184} a^{18} - \frac{95992739439246598687}{1784706335160086920592} a^{17} + \frac{92839092186182575547}{3569412670320173841184} a^{16} + \frac{53885977486993769517}{892353167580043460296} a^{15} + \frac{127040471630325323359}{3569412670320173841184} a^{14} - \frac{153294972228819869181}{1784706335160086920592} a^{13} + \frac{603401178813590394591}{3569412670320173841184} a^{12} - \frac{408437144386700734155}{892353167580043460296} a^{11} + \frac{1124240507247422074901}{3569412670320173841184} a^{10} - \frac{806934579762906122839}{1784706335160086920592} a^{9} - \frac{329768406825211489977}{3569412670320173841184} a^{8} - \frac{416125693715545309581}{892353167580043460296} a^{7} + \frac{23821068675037713353}{3569412670320173841184} a^{6} - \frac{266900379485174548295}{1784706335160086920592} a^{5} + \frac{242101215887381773551}{892353167580043460296} a^{4} - \frac{143795894569624343903}{892353167580043460296} a^{3} - \frac{28471775953665843951}{1784706335160086920592} a^{2} - \frac{352268468812901721725}{892353167580043460296} a + \frac{236333156769368747163}{1784706335160086920592}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 232658701418 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\PSL(2,7)$ (as 21T14):
| A non-solvable group of order 168 |
| The 6 conjugacy class representatives for $\PSL(2,7)$ |
| Character table for $\PSL(2,7)$ |
Intermediate fields
| 7.7.670188544.2, 7.7.670188544.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 siblings: | 7.7.670188544.2, 7.7.670188544.1 |
| Degree 8 sibling: | 8.8.28072042781802496.1 |
| Degree 14 siblings: | 14.14.18813561479041924489805824.1, 14.14.18813561479041924489805824.4 |
| Degree 24 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.10.2 | $x^{6} + 2 x^{5} + 2 x^{4} + 2 x^{2} + 2$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.12.26.65 | $x^{12} + 4 x^{3} + 2$ | $12$ | $1$ | $26$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 809 | Data not computed | ||||||