Normalized defining polynomial
\( x^{21} - 4 x^{20} - 172 x^{19} + 666 x^{18} + 11408 x^{17} - 43140 x^{16} - 378976 x^{15} + 1422996 x^{14} + 6835412 x^{13} - 26070729 x^{12} - 67235959 x^{11} + 269546118 x^{10} + 339303301 x^{9} - 1526878622 x^{8} - 740975509 x^{7} + 4442293901 x^{6} + 269281123 x^{5} - 5893987054 x^{4} + 618720777 x^{3} + 3268069590 x^{2} - 387607364 x - 585814321 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(50100208978759111971843370304908187034231525356881=7^{14}\cdot 127^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $232.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(889=7\cdot 127\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{889}(128,·)$, $\chi_{889}(1,·)$, $\chi_{889}(2,·)$, $\chi_{889}(4,·)$, $\chi_{889}(389,·)$, $\chi_{889}(135,·)$, $\chi_{889}(8,·)$, $\chi_{889}(778,·)$, $\chi_{889}(256,·)$, $\chi_{889}(16,·)$, $\chi_{889}(270,·)$, $\chi_{889}(512,·)$, $\chi_{889}(667,·)$, $\chi_{889}(540,·)$, $\chi_{889}(32,·)$, $\chi_{889}(64,·)$, $\chi_{889}(191,·)$, $\chi_{889}(764,·)$, $\chi_{889}(445,·)$, $\chi_{889}(382,·)$, $\chi_{889}(639,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{19} a^{15} + \frac{8}{19} a^{14} + \frac{8}{19} a^{13} + \frac{8}{19} a^{12} - \frac{2}{19} a^{11} + \frac{8}{19} a^{10} - \frac{2}{19} a^{9} + \frac{7}{19} a^{8} - \frac{8}{19} a^{7} + \frac{5}{19} a^{6} + \frac{6}{19} a^{5} - \frac{9}{19} a^{4} + \frac{6}{19} a^{3} - \frac{1}{19} a^{2} - \frac{9}{19} a + \frac{9}{19}$, $\frac{1}{19} a^{16} + \frac{1}{19} a^{14} + \frac{1}{19} a^{13} - \frac{9}{19} a^{12} + \frac{5}{19} a^{11} - \frac{9}{19} a^{10} + \frac{4}{19} a^{9} - \frac{7}{19} a^{8} - \frac{7}{19} a^{7} + \frac{4}{19} a^{6} + \frac{2}{19} a^{4} + \frac{8}{19} a^{3} - \frac{1}{19} a^{2} + \frac{5}{19} a + \frac{4}{19}$, $\frac{1}{19} a^{17} - \frac{7}{19} a^{14} + \frac{2}{19} a^{13} - \frac{3}{19} a^{12} - \frac{7}{19} a^{11} - \frac{4}{19} a^{10} - \frac{5}{19} a^{9} + \frac{5}{19} a^{8} - \frac{7}{19} a^{7} - \frac{5}{19} a^{6} - \frac{4}{19} a^{5} - \frac{2}{19} a^{4} - \frac{7}{19} a^{3} + \frac{6}{19} a^{2} - \frac{6}{19} a - \frac{9}{19}$, $\frac{1}{13357} a^{18} + \frac{116}{13357} a^{17} + \frac{280}{13357} a^{16} - \frac{53}{13357} a^{15} - \frac{2304}{13357} a^{14} + \frac{84}{13357} a^{13} - \frac{5162}{13357} a^{12} + \frac{3298}{13357} a^{11} + \frac{5649}{13357} a^{10} + \frac{6033}{13357} a^{9} - \frac{455}{13357} a^{8} + \frac{1999}{13357} a^{7} + \frac{2244}{13357} a^{6} + \frac{1}{361} a^{5} - \frac{2096}{13357} a^{4} + \frac{1462}{13357} a^{3} + \frac{319}{703} a^{2} + \frac{5175}{13357} a - \frac{1307}{13357}$, $\frac{1}{13357} a^{19} + \frac{181}{13357} a^{17} - \frac{195}{13357} a^{16} + \frac{329}{13357} a^{15} + \frac{4426}{13357} a^{14} + \frac{2669}{13357} a^{13} + \frac{2431}{13357} a^{12} + \frac{149}{361} a^{11} + \frac{6648}{13357} a^{10} - \frac{153}{703} a^{9} + \frac{4163}{13357} a^{8} - \frac{462}{13357} a^{7} - \frac{1563}{13357} a^{6} - \frac{764}{13357} a^{5} - \frac{6373}{13357} a^{4} - \frac{6059}{13357} a^{3} - \frac{5446}{13357} a^{2} + \frac{5785}{13357} a - \frac{4454}{13357}$, $\frac{1}{14054575991794839538689655529317273711512677620824967685706372635933680491695393} a^{20} - \frac{142268352674372348695954780776986026140387397558858314818172798402049353345}{14054575991794839538689655529317273711512677620824967685706372635933680491695393} a^{19} - \frac{402130852498238644341085822486219896515099082744577493400359798488331869777}{14054575991794839538689655529317273711512677620824967685706372635933680491695393} a^{18} - \frac{278916206722580914785544789760918375111931221430846890628525901331941515132297}{14054575991794839538689655529317273711512677620824967685706372635933680491695393} a^{17} + \frac{282796526583854305682690278257457140088461114782273303146512239606506039004939}{14054575991794839538689655529317273711512677620824967685706372635933680491695393} a^{16} - \frac{65944241177762895899958919002906123321442307199481772481095089200962503130626}{14054575991794839538689655529317273711512677620824967685706372635933680491695393} a^{15} - \frac{5201849845885656284274121072906104781410267552088304078882208801451526863556596}{14054575991794839538689655529317273711512677620824967685706372635933680491695393} a^{14} + \frac{6821504046819955346659852341746217642148661041991295431523877748647974863073337}{14054575991794839538689655529317273711512677620824967685706372635933680491695393} a^{13} - \frac{4984667039221296279373299012361758347814110075361808314762315125149839211249313}{14054575991794839538689655529317273711512677620824967685706372635933680491695393} a^{12} + \frac{86069686060117870831635994766410738380185667385722653608543277439260302623846}{379853405183644311856477176468034424635477773535809937451523584754964337613389} a^{11} + \frac{4250663028680648395204701682527622332107451038403231326850010537252316526118876}{14054575991794839538689655529317273711512677620824967685706372635933680491695393} a^{10} + \frac{516049463345155979277524023234433530367198596053179442648832374928054546687950}{14054575991794839538689655529317273711512677620824967685706372635933680491695393} a^{9} + \frac{6156756360825667622910388857082556722828912653114787233435995119160595575235339}{14054575991794839538689655529317273711512677620824967685706372635933680491695393} a^{8} - \frac{1871745535659141151166619120310385798705534343850712855716773314023203252447095}{14054575991794839538689655529317273711512677620824967685706372635933680491695393} a^{7} + \frac{2450143108566838224389563849156211179430545262698225598169586161634648585161878}{14054575991794839538689655529317273711512677620824967685706372635933680491695393} a^{6} + \frac{2828758974744094335091486896838493980903439339991818799140548159520330134150722}{14054575991794839538689655529317273711512677620824967685706372635933680491695393} a^{5} - \frac{4979660484305967902501077850650169919993213875746842050678561182237342238986255}{14054575991794839538689655529317273711512677620824967685706372635933680491695393} a^{4} + \frac{4992033091810892850241466376735843390447284722837187135935187376098322071965516}{14054575991794839538689655529317273711512677620824967685706372635933680491695393} a^{3} + \frac{3974686777351231133047528406391256037869892755320766830749228335393734624777478}{14054575991794839538689655529317273711512677620824967685706372635933680491695393} a^{2} + \frac{2315439933337560619421493047542760753116268035223479390849781506139723939859005}{14054575991794839538689655529317273711512677620824967685706372635933680491695393} a - \frac{5287970565431306964452931113540470406237232410311248723154146244545670553572002}{14054575991794839538689655529317273711512677620824967685706372635933680491695393}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 688733692772026100 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 7.7.4195872914689.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | $21$ | R | $21$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | $21$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | $21$ | $21$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $127$ | 127.7.6.1 | $x^{7} - 127$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 127.7.6.1 | $x^{7} - 127$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 127.7.6.1 | $x^{7} - 127$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |