Normalized defining polynomial
\( x^{21} - 3 x^{20} - 114 x^{19} + 378 x^{18} + 4720 x^{17} - 18268 x^{16} - 92372 x^{15} + 440572 x^{14} + 854237 x^{13} - 5819847 x^{12} - 2098218 x^{11} + 43117146 x^{10} - 24499166 x^{9} - 172066922 x^{8} + 212267312 x^{7} + 313874448 x^{6} - 627347440 x^{5} - 93152336 x^{4} + 688442080 x^{3} - 275865888 x^{2} - 111827424 x + 53833824 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4873621493405139175690041549663712051200000000=2^{49}\cdot 3^{8}\cdot 5^{8}\cdot 491^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $149.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 491$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} + \frac{1}{6} a^{4} + \frac{1}{6} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{12} a^{12} - \frac{1}{12} a^{8} - \frac{1}{6} a^{7} + \frac{1}{6} a^{6} + \frac{1}{6} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{24} a^{13} - \frac{1}{24} a^{12} - \frac{1}{24} a^{9} + \frac{5}{24} a^{8} - \frac{1}{12} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{5}{12} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{24} a^{14} - \frac{1}{24} a^{12} - \frac{1}{24} a^{10} - \frac{1}{12} a^{9} - \frac{1}{8} a^{8} - \frac{1}{12} a^{7} - \frac{1}{4} a^{6} - \frac{1}{6} a^{5} + \frac{5}{12} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{48} a^{15} - \frac{1}{48} a^{13} - \frac{1}{48} a^{11} + \frac{1}{12} a^{10} + \frac{1}{16} a^{9} - \frac{1}{6} a^{8} - \frac{1}{12} a^{6} + \frac{11}{24} a^{5} + \frac{1}{6} a^{4} - \frac{1}{2} a$, $\frac{1}{144} a^{16} + \frac{1}{144} a^{15} - \frac{1}{48} a^{14} + \frac{1}{144} a^{13} - \frac{5}{144} a^{12} + \frac{1}{48} a^{11} + \frac{1}{16} a^{10} - \frac{5}{48} a^{9} - \frac{1}{6} a^{8} + \frac{1}{9} a^{7} - \frac{13}{72} a^{6} - \frac{1}{24} a^{5} - \frac{4}{9} a^{4} - \frac{4}{9} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a$, $\frac{1}{144} a^{17} - \frac{1}{144} a^{15} - \frac{1}{72} a^{14} - \frac{1}{48} a^{13} - \frac{1}{36} a^{12} + \frac{1}{48} a^{11} - \frac{1}{24} a^{10} + \frac{1}{24} a^{9} + \frac{1}{36} a^{8} - \frac{1}{8} a^{7} - \frac{1}{9} a^{6} + \frac{11}{36} a^{5} - \frac{1}{3} a^{4} + \frac{1}{9} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3} a$, $\frac{1}{864} a^{18} + \frac{1}{864} a^{17} + \frac{1}{864} a^{16} + \frac{5}{864} a^{15} + \frac{1}{864} a^{14} + \frac{1}{864} a^{13} - \frac{11}{864} a^{12} - \frac{1}{32} a^{11} - \frac{1}{144} a^{10} - \frac{19}{432} a^{9} - \frac{91}{432} a^{8} - \frac{37}{432} a^{7} + \frac{1}{72} a^{6} - \frac{73}{216} a^{5} + \frac{49}{108} a^{4} + \frac{49}{108} a^{3} - \frac{4}{9} a^{2} - \frac{5}{18} a + \frac{1}{3}$, $\frac{1}{864} a^{19} - \frac{1}{432} a^{16} + \frac{1}{108} a^{15} - \frac{1}{48} a^{14} + \frac{7}{432} a^{12} - \frac{5}{288} a^{11} + \frac{11}{432} a^{10} + \frac{1}{24} a^{9} - \frac{1}{24} a^{8} - \frac{5}{432} a^{7} + \frac{53}{216} a^{6} - \frac{7}{24} a^{5} - \frac{2}{9} a^{4} + \frac{5}{108} a^{3} + \frac{1}{6} a^{2} + \frac{5}{18} a - \frac{1}{3}$, $\frac{1}{5692096291029920795706139477548174165994368} a^{20} - \frac{4159811315683046415288181079563983511}{355756018189370049731633717346760885374648} a^{19} - \frac{525432870055071438807680074272447326077}{2846048145514960397853069738774087082997184} a^{18} + \frac{2642313451409258525305580275622025544493}{1423024072757480198926534869387043541498592} a^{17} - \frac{2341819856392768162712099424197433930091}{1423024072757480198926534869387043541498592} a^{16} - \frac{60259593415742022230502756284343229519}{9882111616371390270323158815187802371518} a^{15} + \frac{15469605504427325345534013010668554742859}{1423024072757480198926534869387043541498592} a^{14} + \frac{1414270930379804982366577730163353680601}{118585339396456683243877905782253628458216} a^{13} + \frac{56098049452573468108565201469954214537661}{5692096291029920795706139477548174165994368} a^{12} + \frac{12047515587657006089623868631400857268501}{355756018189370049731633717346760885374648} a^{11} + \frac{325757061217064206817822152866770799733375}{2846048145514960397853069738774087082997184} a^{10} + \frac{82170953807456969857430854402442476680475}{1423024072757480198926534869387043541498592} a^{9} - \frac{206822718229189281391873562460189042050923}{948682715171653465951023246258029027665728} a^{8} + \frac{2424059690295900508758706226749956395603}{44469502273671256216454214668345110671831} a^{7} - \frac{38675315154358585923010809732883576348553}{355756018189370049731633717346760885374648} a^{6} + \frac{120060953189490849943483988162034901735691}{355756018189370049731633717346760885374648} a^{5} - \frac{32060866453407544163177403450176651697863}{118585339396456683243877905782253628458216} a^{4} + \frac{35187459211173661265170173221538512431915}{88939004547342512432908429336690221343662} a^{3} - \frac{4559688748050964067111982294649864981231}{19764223232742780540646317630375604743036} a^{2} + \frac{3096703104588961924381494011383351541731}{14823167424557085405484738222781703557277} a - \frac{607770203206711939349449084349463716341}{19764223232742780540646317630375604743036}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2430053091190000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 336 |
| The 9 conjugacy class representatives for $SO(3,7)$ |
| Character table for $SO(3,7)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 8 sibling: | data not computed |
| Degree 14 sibling: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 28 siblings: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.10.6 | $x^{4} + 6 x^{2} + 3$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 2.4.9.7 | $x^{4} + 2 x^{2} + 6$ | $4$ | $1$ | $9$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 2.8.22.83 | $x^{8} + 4 x^{7} + 2 x^{4} + 4 x^{2} + 14$ | $8$ | $1$ | $22$ | $D_4$ | $[2, 3, 7/2]$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.8.4.2 | $x^{8} + 25 x^{4} - 250 x^{2} + 1250$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.2 | $x^{8} + 25 x^{4} - 250 x^{2} + 1250$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 491 | Data not computed | ||||||