Normalized defining polynomial
\( x^{21} - 3 x^{20} - 54 x^{19} + 142 x^{18} + 1131 x^{17} - 2619 x^{16} - 12066 x^{15} + 24246 x^{14} + 72072 x^{13} - 121339 x^{12} - 250395 x^{11} + 331947 x^{10} + 508726 x^{9} - 470445 x^{8} - 589995 x^{7} + 290104 x^{6} + 363423 x^{5} - 39813 x^{4} - 91517 x^{3} - 11880 x^{2} + 3264 x + 289 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4814587615056751193058435502319478353721=3^{28}\cdot 29^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(261=3^{2}\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{261}(256,·)$, $\chi_{261}(1,·)$, $\chi_{261}(7,·)$, $\chi_{261}(136,·)$, $\chi_{261}(139,·)$, $\chi_{261}(16,·)$, $\chi_{261}(82,·)$, $\chi_{261}(88,·)$, $\chi_{261}(25,·)$, $\chi_{261}(94,·)$, $\chi_{261}(223,·)$, $\chi_{261}(226,·)$, $\chi_{261}(103,·)$, $\chi_{261}(169,·)$, $\chi_{261}(199,·)$, $\chi_{261}(175,·)$, $\chi_{261}(112,·)$, $\chi_{261}(49,·)$, $\chi_{261}(52,·)$, $\chi_{261}(181,·)$, $\chi_{261}(190,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{17} a^{13} + \frac{2}{17} a^{11} - \frac{8}{17} a^{10} + \frac{7}{17} a^{9} + \frac{2}{17} a^{8} - \frac{1}{17} a^{7} - \frac{8}{17} a^{6} + \frac{3}{17} a^{5} - \frac{2}{17} a^{4} - \frac{1}{17} a^{3} - \frac{1}{17} a^{2} + \frac{6}{17} a$, $\frac{1}{17} a^{14} + \frac{2}{17} a^{12} - \frac{8}{17} a^{11} + \frac{7}{17} a^{10} + \frac{2}{17} a^{9} - \frac{1}{17} a^{8} - \frac{8}{17} a^{7} + \frac{3}{17} a^{6} - \frac{2}{17} a^{5} - \frac{1}{17} a^{4} - \frac{1}{17} a^{3} + \frac{6}{17} a^{2}$, $\frac{1}{17} a^{15} - \frac{8}{17} a^{12} + \frac{3}{17} a^{11} + \frac{1}{17} a^{10} + \frac{2}{17} a^{9} + \frac{5}{17} a^{8} + \frac{5}{17} a^{7} - \frac{3}{17} a^{6} - \frac{7}{17} a^{5} + \frac{3}{17} a^{4} + \frac{8}{17} a^{3} + \frac{2}{17} a^{2} + \frac{5}{17} a$, $\frac{1}{17} a^{16} + \frac{3}{17} a^{12} + \frac{6}{17} a^{10} - \frac{7}{17} a^{9} + \frac{4}{17} a^{8} + \frac{6}{17} a^{7} - \frac{3}{17} a^{6} - \frac{7}{17} a^{5} - \frac{8}{17} a^{4} - \frac{6}{17} a^{3} - \frac{3}{17} a^{2} - \frac{3}{17} a$, $\frac{1}{17} a^{17} - \frac{1}{17} a$, $\frac{1}{289} a^{18} + \frac{6}{289} a^{17} - \frac{7}{289} a^{16} + \frac{5}{289} a^{15} - \frac{4}{289} a^{14} - \frac{1}{289} a^{13} + \frac{101}{289} a^{12} + \frac{28}{289} a^{11} - \frac{108}{289} a^{10} - \frac{7}{289} a^{9} + \frac{101}{289} a^{8} + \frac{33}{289} a^{7} + \frac{70}{289} a^{6} + \frac{70}{289} a^{5} + \frac{9}{289} a^{4} + \frac{121}{289} a^{3} + \frac{126}{289} a^{2} - \frac{4}{17} a$, $\frac{1}{289} a^{19} + \frac{8}{289} a^{17} - \frac{4}{289} a^{16} + \frac{6}{289} a^{14} + \frac{5}{289} a^{13} + \frac{7}{17} a^{12} + \frac{47}{289} a^{11} - \frac{90}{289} a^{10} + \frac{109}{289} a^{9} + \frac{73}{289} a^{8} - \frac{26}{289} a^{7} - \frac{112}{289} a^{6} + \frac{14}{289} a^{5} - \frac{69}{289} a^{4} + \frac{97}{289} a^{3} - \frac{25}{289} a^{2} + \frac{4}{17} a$, $\frac{1}{25868591832567242447165180114767} a^{20} + \frac{44080777474058651215642036056}{25868591832567242447165180114767} a^{19} - \frac{29691303483750621108176082876}{25868591832567242447165180114767} a^{18} + \frac{605740634206734361101833712471}{25868591832567242447165180114767} a^{17} + \frac{541369516297095658990735191095}{25868591832567242447165180114767} a^{16} + \frac{675122617170149108144444388862}{25868591832567242447165180114767} a^{15} + \frac{373349194648755463698297829570}{25868591832567242447165180114767} a^{14} + \frac{246990417886384333589316773732}{25868591832567242447165180114767} a^{13} + \frac{3046038451476484985882847882808}{25868591832567242447165180114767} a^{12} + \frac{1389444622965649162953381668582}{25868591832567242447165180114767} a^{11} - \frac{2445005391295722299959424478131}{25868591832567242447165180114767} a^{10} + \frac{1387965008837562221639047260494}{25868591832567242447165180114767} a^{9} + \frac{5404695864881963443122245843595}{25868591832567242447165180114767} a^{8} - \frac{7074712923361484664987626200266}{25868591832567242447165180114767} a^{7} - \frac{3668368773144797376661635005402}{25868591832567242447165180114767} a^{6} + \frac{10158964056082137176614233128442}{25868591832567242447165180114767} a^{5} + \frac{12060365105884441313740348689913}{25868591832567242447165180114767} a^{4} - \frac{808611512761399862412719615007}{25868591832567242447165180114767} a^{3} - \frac{3688207106703257525852039904857}{25868591832567242447165180114767} a^{2} + \frac{2147789299507019562103351794}{1521681872503955438068540006751} a + \frac{33446454840682602666897759145}{89510698382585614004031765103}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25788034339300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | R | $21$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{21}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | $21$ | R | $21$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{7}$ | $21$ | $21$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 29 | Data not computed | ||||||