Normalized defining polynomial
\( x^{21} - 3 x^{20} - 108 x^{19} + 220 x^{18} + 4893 x^{17} - 5637 x^{16} - 119292 x^{15} + 48774 x^{14} + 1686642 x^{13} + 326899 x^{12} - 13945275 x^{11} - 9596163 x^{10} + 64179378 x^{9} + 72399831 x^{8} - 139946343 x^{7} - 231646188 x^{6} + 66234471 x^{5} + 266883405 x^{4} + 109853705 x^{3} - 40148160 x^{2} - 34962030 x - 5904559 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(48088962682434277721537576300296135799190535521=3^{28}\cdot 71^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $167.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(639=3^{2}\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{639}(1,·)$, $\chi_{639}(517,·)$, $\chi_{639}(385,·)$, $\chi_{639}(463,·)$, $\chi_{639}(400,·)$, $\chi_{639}(529,·)$, $\chi_{639}(403,·)$, $\chi_{639}(214,·)$, $\chi_{639}(91,·)$, $\chi_{639}(598,·)$, $\chi_{639}(37,·)$, $\chi_{639}(613,·)$, $\chi_{639}(103,·)$, $\chi_{639}(616,·)$, $\chi_{639}(427,·)$, $\chi_{639}(172,·)$, $\chi_{639}(304,·)$, $\chi_{639}(250,·)$, $\chi_{639}(187,·)$, $\chi_{639}(316,·)$, $\chi_{639}(190,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{85} a^{12} + \frac{5}{17} a^{11} - \frac{42}{85} a^{10} + \frac{21}{85} a^{9} - \frac{39}{85} a^{8} + \frac{11}{85} a^{7} - \frac{11}{85} a^{6} + \frac{14}{85} a^{5} + \frac{21}{85} a^{4} - \frac{19}{85} a^{3} - \frac{32}{85} a^{2} - \frac{1}{85} a + \frac{2}{5}$, $\frac{1}{85} a^{13} + \frac{13}{85} a^{11} - \frac{2}{5} a^{10} + \frac{31}{85} a^{9} - \frac{2}{5} a^{8} - \frac{31}{85} a^{7} + \frac{2}{5} a^{6} + \frac{11}{85} a^{5} - \frac{2}{5} a^{4} + \frac{18}{85} a^{3} + \frac{2}{5} a^{2} - \frac{26}{85} a$, $\frac{1}{85} a^{14} - \frac{19}{85} a^{11} - \frac{18}{85} a^{10} + \frac{33}{85} a^{9} - \frac{2}{5} a^{8} - \frac{24}{85} a^{7} - \frac{16}{85} a^{6} + \frac{39}{85} a^{5} + \frac{26}{85} a^{3} - \frac{7}{17} a^{2} + \frac{13}{85} a - \frac{1}{5}$, $\frac{1}{85} a^{15} + \frac{32}{85} a^{11} + \frac{5}{17} a^{9} + \frac{23}{85} a^{7} + \frac{11}{85} a^{5} + \frac{29}{85} a^{3} - \frac{36}{85} a - \frac{2}{5}$, $\frac{1}{85} a^{16} - \frac{7}{17} a^{11} + \frac{9}{85} a^{10} + \frac{8}{85} a^{9} - \frac{4}{85} a^{8} - \frac{12}{85} a^{7} + \frac{23}{85} a^{6} - \frac{23}{85} a^{5} + \frac{37}{85} a^{4} + \frac{13}{85} a^{3} - \frac{32}{85} a^{2} - \frac{2}{85} a + \frac{1}{5}$, $\frac{1}{85} a^{17} + \frac{2}{5} a^{11} - \frac{1}{5} a^{10} - \frac{2}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{18}{85} a$, $\frac{1}{425} a^{18} - \frac{1}{425} a^{17} - \frac{2}{425} a^{15} + \frac{1}{425} a^{14} + \frac{2}{425} a^{12} - \frac{84}{425} a^{11} - \frac{8}{25} a^{10} - \frac{77}{425} a^{9} + \frac{24}{425} a^{8} - \frac{133}{425} a^{7} - \frac{4}{425} a^{6} - \frac{42}{85} a^{5} + \frac{178}{425} a^{4} + \frac{151}{425} a^{3} + \frac{53}{425} a^{2} + \frac{2}{17} a - \frac{6}{25}$, $\frac{1}{7225} a^{19} + \frac{8}{7225} a^{18} + \frac{1}{7225} a^{17} + \frac{8}{7225} a^{16} + \frac{38}{7225} a^{15} - \frac{36}{7225} a^{14} + \frac{42}{7225} a^{13} - \frac{21}{7225} a^{12} - \frac{2167}{7225} a^{11} - \frac{1271}{7225} a^{10} - \frac{1404}{7225} a^{9} + \frac{3388}{7225} a^{8} + \frac{959}{7225} a^{7} - \frac{3361}{7225} a^{6} - \frac{1852}{7225} a^{5} - \frac{1012}{7225} a^{4} - \frac{463}{7225} a^{3} + \frac{1957}{7225} a^{2} - \frac{31}{425} a - \frac{7}{25}$, $\frac{1}{7931706429483875339033686820377564523812413601030675} a^{20} - \frac{77163016685290701589060691498149799260934475621}{1586341285896775067806737364075512904762482720206135} a^{19} + \frac{4792090653521813408458398718431049158003900437564}{7931706429483875339033686820377564523812413601030675} a^{18} + \frac{24463082673904275683347648971099405411761099646358}{7931706429483875339033686820377564523812413601030675} a^{17} - \frac{45433054894675152651417936562940553473610385979936}{7931706429483875339033686820377564523812413601030675} a^{16} - \frac{23024305013710511119095955978718562722092082682954}{7931706429483875339033686820377564523812413601030675} a^{15} + \frac{24770861944826584995980418657371628657162705771327}{7931706429483875339033686820377564523812413601030675} a^{14} + \frac{18945965978091290503962260493097070925637780863153}{7931706429483875339033686820377564523812413601030675} a^{13} + \frac{1795079981580830797410039804056808304099197479512}{1586341285896775067806737364075512904762482720206135} a^{12} + \frac{2271464088786390186935612752608874976034532669372072}{7931706429483875339033686820377564523812413601030675} a^{11} + \frac{647026569542212749370844183265419629995627809860022}{7931706429483875339033686820377564523812413601030675} a^{10} + \frac{2852503854116603101672821478688070180695526105153291}{7931706429483875339033686820377564523812413601030675} a^{9} - \frac{3541755517156870720276439997736357448428816455189092}{7931706429483875339033686820377564523812413601030675} a^{8} + \frac{2491121257758623642664274849308703565201267549980021}{7931706429483875339033686820377564523812413601030675} a^{7} + \frac{2975071323606132148385056123112230211977564198346583}{7931706429483875339033686820377564523812413601030675} a^{6} + \frac{3634148010731057021958308531844040227714200371732174}{7931706429483875339033686820377564523812413601030675} a^{5} - \frac{1049697022951635120466033226104115834093678414214466}{7931706429483875339033686820377564523812413601030675} a^{4} - \frac{3641323931960213019864647729131790994609115188645657}{7931706429483875339033686820377564523812413601030675} a^{3} - \frac{3307239419950111567211438849764709509750869760499872}{7931706429483875339033686820377564523812413601030675} a^{2} - \frac{132981508412189270730269197219641410802498324592816}{466570966440227961119628636492797913165436094178275} a - \frac{1278032462918442110025141584415079432831776275698}{5489070193414446601407395723444681331358071696215}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 82999008884616240 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 7.7.128100283921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{7}$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{21}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $71$ | 71.7.6.1 | $x^{7} - 71$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 71.7.6.1 | $x^{7} - 71$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 71.7.6.1 | $x^{7} - 71$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |