Normalized defining polynomial
\( x^{21} - x^{20} - 42 x^{19} + 45 x^{18} + 679 x^{17} - 739 x^{16} - 5517 x^{15} + 5869 x^{14} + 24849 x^{13} - 25116 x^{12} - 63963 x^{11} + 60287 x^{10} + 91976 x^{9} - 80247 x^{8} - 67381 x^{7} + 54968 x^{6} + 19398 x^{5} - 15878 x^{4} - 214 x^{3} + 599 x^{2} + 7 x - 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4807893938270387570039361667473274513=7^{14}\cdot 577^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{41} a^{19} + \frac{17}{41} a^{18} + \frac{7}{41} a^{17} - \frac{16}{41} a^{16} - \frac{14}{41} a^{15} + \frac{5}{41} a^{14} + \frac{16}{41} a^{13} - \frac{7}{41} a^{12} - \frac{12}{41} a^{11} + \frac{1}{41} a^{10} - \frac{17}{41} a^{9} - \frac{13}{41} a^{8} + \frac{7}{41} a^{7} + \frac{13}{41} a^{6} + \frac{16}{41} a^{5} + \frac{9}{41} a^{4} - \frac{9}{41} a^{3} + \frac{15}{41} a^{2} - \frac{9}{41} a - \frac{15}{41}$, $\frac{1}{5679038659914732157253659708613} a^{20} - \frac{10840763106943312344809133017}{5679038659914732157253659708613} a^{19} - \frac{1959920471601085449660496842573}{5679038659914732157253659708613} a^{18} - \frac{2394951428210498514742063015071}{5679038659914732157253659708613} a^{17} - \frac{1954296273972732584098892386399}{5679038659914732157253659708613} a^{16} + \frac{1522416888458515522129135518332}{5679038659914732157253659708613} a^{15} + \frac{2445765032610662392140456006811}{5679038659914732157253659708613} a^{14} + \frac{109857576034746689221797400753}{5679038659914732157253659708613} a^{13} + \frac{2348944973934994493599677262292}{5679038659914732157253659708613} a^{12} + \frac{2603636397793355162389263008258}{5679038659914732157253659708613} a^{11} - \frac{1918578740173746912650229208817}{5679038659914732157253659708613} a^{10} - \frac{138626549351956045516655495453}{5679038659914732157253659708613} a^{9} + \frac{2364292050002653220690794657014}{5679038659914732157253659708613} a^{8} - \frac{1063483783022862205232616156476}{5679038659914732157253659708613} a^{7} - \frac{1611582094100525510528171826971}{5679038659914732157253659708613} a^{6} + \frac{731117543324181744430839825463}{5679038659914732157253659708613} a^{5} + \frac{1823955059539027518963383064208}{5679038659914732157253659708613} a^{4} - \frac{2045500731215844883069247129739}{5679038659914732157253659708613} a^{3} - \frac{1821610339989678334526180035767}{5679038659914732157253659708613} a^{2} - \frac{442291460669373706454021659619}{5679038659914732157253659708613} a - \frac{533400164411091294440736250193}{5679038659914732157253659708613}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 524399167092 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times D_7$ (as 21T3):
| A solvable group of order 42 |
| The 15 conjugacy class representatives for $C_3\times D_7$ |
| Character table for $C_3\times D_7$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 7.7.192100033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | $21$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | $21$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 577 | Data not computed | ||||||