Normalized defining polynomial
\( x^{21} - 56 x^{19} + 1295 x^{17} - 16198 x^{15} - 362 x^{14} + 120442 x^{13} + 10052 x^{12} - 550564 x^{11} - 106400 x^{10} + 1541932 x^{9} + 542556 x^{8} - 2522507 x^{7} - 1388660 x^{6} + 2084446 x^{5} + 1656200 x^{4} - 498043 x^{3} - 679042 x^{2} - 108836 x + 17576 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(479326495885529228039730385744116026441728=2^{18}\cdot 7^{35}\cdot 13^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{2}$, $\frac{1}{52} a^{17} + \frac{9}{52} a^{15} + \frac{2}{13} a^{13} - \frac{1}{2} a^{11} + \frac{1}{26} a^{10} - \frac{4}{13} a^{9} - \frac{5}{26} a^{8} + \frac{3}{13} a^{7} + \frac{9}{26} a^{6} - \frac{6}{13} a^{5} + \frac{7}{26} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{52} a^{18} + \frac{9}{52} a^{16} + \frac{2}{13} a^{14} - \frac{1}{2} a^{12} + \frac{1}{26} a^{11} - \frac{4}{13} a^{10} - \frac{5}{26} a^{9} + \frac{3}{13} a^{8} + \frac{9}{26} a^{7} - \frac{6}{13} a^{6} + \frac{7}{26} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{104} a^{19} - \frac{21}{104} a^{15} - \frac{1}{2} a^{14} + \frac{3}{52} a^{13} - \frac{25}{52} a^{12} + \frac{5}{52} a^{11} - \frac{7}{26} a^{10} - \frac{1}{2} a^{9} - \frac{6}{13} a^{8} - \frac{7}{26} a^{7} - \frac{11}{26} a^{6} + \frac{21}{104} a^{5} + \frac{1}{26} a^{4} - \frac{1}{4} a^{3} - \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{6073224152832683168133567474368} a^{20} + \frac{928501163928567535240133063}{233585544339718583389752595168} a^{19} + \frac{4358840162655102597717633427}{1518306038208170792033391868592} a^{18} + \frac{242648273732335009061581079}{58396386084929645847438148792} a^{17} + \frac{244674127482310475876964582111}{6073224152832683168133567474368} a^{16} + \frac{19228788255950221337722626577}{233585544339718583389752595168} a^{15} + \frac{98757421042049699847788454807}{233585544339718583389752595168} a^{14} + \frac{274553251816145913789322064285}{3036612076416341584066783737184} a^{13} - \frac{1028403999212195139058276310437}{3036612076416341584066783737184} a^{12} + \frac{260068200630078513993346393681}{759153019104085396016695934296} a^{11} - \frac{164642894071478158513946816629}{1518306038208170792033391868592} a^{10} + \frac{146626780501043122402716433605}{759153019104085396016695934296} a^{9} - \frac{276435165043493571621124642497}{1518306038208170792033391868592} a^{8} + \frac{385317459611977072401565468641}{1518306038208170792033391868592} a^{7} + \frac{203691864970963524458511063969}{467171088679437166779505190336} a^{6} + \frac{91361593966432144268623502041}{233585544339718583389752595168} a^{5} - \frac{92361324147446883358575542191}{233585544339718583389752595168} a^{4} + \frac{2425255695341801755043075773}{8984059397681483976528945968} a^{3} + \frac{6765319950940982241712454357}{35936237590725935906115783872} a^{2} - \frac{4271521285153736111270196957}{8984059397681483976528945968} a - \frac{1656778332791290168287408031}{8984059397681483976528945968}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 268570252786000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2058 |
| The 71 conjugacy class representatives for t21n31 are not computed |
| Character table for t21n31 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | $21$ | $21$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | $21$ | $21$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.7.6.1 | $x^{7} - 13$ | $7$ | $1$ | $6$ | $D_{7}$ | $[\ ]_{7}^{2}$ | |