Normalized defining polynomial
\( x^{21} - 6 x^{20} - 300 x^{19} + 1927 x^{18} + 36842 x^{17} - 264617 x^{16} - 2308644 x^{15} + 19971897 x^{14} + 70201991 x^{13} - 880321458 x^{12} - 313927359 x^{11} + 21760800986 x^{10} - 42451631619 x^{9} - 237011113971 x^{8} + 1113186887432 x^{7} - 554971101499 x^{6} - 7187885452232 x^{5} + 23873107738441 x^{4} - 37359130697657 x^{3} + 33010416695533 x^{2} - 15899761516876 x + 3264801335137 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4750515842525774314075603960650823606111677688716139449933283328=2^{14}\cdot 29^{18}\cdot 3323\cdot 11354851^{2}\cdot 56706367^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1077.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 29, 3323, 11354851, 56706367$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{17} a^{17} - \frac{1}{17} a^{16} - \frac{7}{17} a^{15} - \frac{3}{17} a^{14} - \frac{8}{17} a^{13} - \frac{1}{17} a^{12} - \frac{5}{17} a^{11} + \frac{3}{17} a^{9} + \frac{7}{17} a^{8} + \frac{7}{17} a^{7} - \frac{4}{17} a^{6} - \frac{3}{17} a^{5} - \frac{3}{17} a^{4} - \frac{1}{17} a^{3} + \frac{4}{17} a^{2} - \frac{5}{17} a$, $\frac{1}{17} a^{18} - \frac{8}{17} a^{16} + \frac{7}{17} a^{15} + \frac{6}{17} a^{14} + \frac{8}{17} a^{13} - \frac{6}{17} a^{12} - \frac{5}{17} a^{11} + \frac{3}{17} a^{10} - \frac{7}{17} a^{9} - \frac{3}{17} a^{8} + \frac{3}{17} a^{7} - \frac{7}{17} a^{6} - \frac{6}{17} a^{5} - \frac{4}{17} a^{4} + \frac{3}{17} a^{3} - \frac{1}{17} a^{2} - \frac{5}{17} a$, $\frac{1}{17} a^{19} - \frac{1}{17} a^{16} + \frac{1}{17} a^{15} + \frac{1}{17} a^{14} - \frac{2}{17} a^{13} + \frac{4}{17} a^{12} - \frac{3}{17} a^{11} - \frac{7}{17} a^{10} + \frac{4}{17} a^{9} + \frac{8}{17} a^{8} - \frac{2}{17} a^{7} - \frac{4}{17} a^{6} + \frac{6}{17} a^{5} - \frac{4}{17} a^{4} + \frac{8}{17} a^{3} - \frac{7}{17} a^{2} - \frac{6}{17} a$, $\frac{1}{62693487256562846083349001403400523519462710983} a^{20} - \frac{416473323275874235870751511728527017084367595}{62693487256562846083349001403400523519462710983} a^{19} - \frac{1488685112351717582408914039698471112423911027}{62693487256562846083349001403400523519462710983} a^{18} - \frac{1795414728794553169395559887385019855093954459}{62693487256562846083349001403400523519462710983} a^{17} - \frac{15248623857913741054072549623592292851854718214}{62693487256562846083349001403400523519462710983} a^{16} - \frac{27376138967066858213007620171398489458641170438}{62693487256562846083349001403400523519462710983} a^{15} + \frac{3464316173173436899425566937820984076879627504}{62693487256562846083349001403400523519462710983} a^{14} - \frac{15144591603850288794695057587478930883373462911}{62693487256562846083349001403400523519462710983} a^{13} - \frac{29675542683209410846559140433105918690480706246}{62693487256562846083349001403400523519462710983} a^{12} - \frac{6256101698804614464752273896326928271547255933}{62693487256562846083349001403400523519462710983} a^{11} - \frac{22162427345577174232713946422521963748051283086}{62693487256562846083349001403400523519462710983} a^{10} + \frac{5152210694630361277350499941817301214142409175}{62693487256562846083349001403400523519462710983} a^{9} + \frac{9514357027876128382888928399851145635938889114}{62693487256562846083349001403400523519462710983} a^{8} - \frac{12520751819251552679083073348976217393348046802}{62693487256562846083349001403400523519462710983} a^{7} + \frac{938346403989864570467227947840095322189860240}{62693487256562846083349001403400523519462710983} a^{6} + \frac{11396393344057783004635541084842632602758112332}{62693487256562846083349001403400523519462710983} a^{5} + \frac{23792416945589985086526406490566836396361265952}{62693487256562846083349001403400523519462710983} a^{4} - \frac{2483162598016838768596095025219239186056141228}{62693487256562846083349001403400523519462710983} a^{3} - \frac{7218815418498276757118148588477077688772835484}{62693487256562846083349001403400523519462710983} a^{2} + \frac{4812867019141597136766952294038574309300727}{3687852191562520357844058906082383736438982999} a - \frac{2124412154637512698388869815390393160629791}{5291036142844362062903958258367838933197967}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6555064187610000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1959552 |
| The 333 conjugacy class representatives for t21n123 are not computed |
| Character table for t21n123 is not computed |
Intermediate fields
| 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{10}$ | $21$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.24 | $x^{14} - 3 x^{12} + 2 x^{11} + 2 x^{10} + 4 x^{8} + 4 x^{7} + 2 x^{6} + 2 x^{4} + 2 x^{2} + 2 x + 3$ | $2$ | $7$ | $14$ | 14T9 | $[2, 2, 2, 2]^{7}$ | |
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.14.12.1 | $x^{14} + 2407 x^{7} + 1839267$ | $7$ | $2$ | $12$ | $C_{14}$ | $[\ ]_{7}^{2}$ | |
| 3323 | Data not computed | ||||||
| 11354851 | Data not computed | ||||||
| 56706367 | Data not computed | ||||||