Normalized defining polynomial
\( x^{21} - 3 x^{20} - 57 x^{19} + 208 x^{18} + 1017 x^{17} - 4470 x^{16} - 6390 x^{15} + 37887 x^{14} + 15282 x^{13} - 158528 x^{12} - 1233 x^{11} + 354021 x^{10} - 59437 x^{9} - 428406 x^{8} + 104895 x^{7} + 270894 x^{6} - 71394 x^{5} - 79299 x^{4} + 18503 x^{3} + 7767 x^{2} - 1188 x - 19 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4723624648173806587548558901725364224=2^{18}\cdot 3^{28}\cdot 31^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{168495672868149678045651526556631321007739} a^{20} + \frac{65321183589421942731705843296382011930700}{168495672868149678045651526556631321007739} a^{19} - \frac{27040149276198091257416711841256329204962}{168495672868149678045651526556631321007739} a^{18} - \frac{52370979985405125584225466803518755533657}{168495672868149678045651526556631321007739} a^{17} - \frac{2115977479180287156618423630909016194261}{168495672868149678045651526556631321007739} a^{16} - \frac{43048925389534183956762990864999780563177}{168495672868149678045651526556631321007739} a^{15} - \frac{89980922758252415452993136456218353065}{168495672868149678045651526556631321007739} a^{14} - \frac{13086260898018416672375820334489651932745}{168495672868149678045651526556631321007739} a^{13} - \frac{71946067805288133040279484220193200032086}{168495672868149678045651526556631321007739} a^{12} - \frac{76581439344568012630303903566860265233205}{168495672868149678045651526556631321007739} a^{11} + \frac{41299310970962515611934771526327486087395}{168495672868149678045651526556631321007739} a^{10} + \frac{84097016722782157258795746000400400376373}{168495672868149678045651526556631321007739} a^{9} - \frac{17997863467833199617642707658966059156756}{168495672868149678045651526556631321007739} a^{8} - \frac{59561719129223119371824719885276571356470}{168495672868149678045651526556631321007739} a^{7} - \frac{45872934620064756841408162664481634208046}{168495672868149678045651526556631321007739} a^{6} - \frac{66506493717726258206650225615070637672757}{168495672868149678045651526556631321007739} a^{5} + \frac{39360077057539309875002851618481552077645}{168495672868149678045651526556631321007739} a^{4} - \frac{54130716207356361042963774812356556766283}{168495672868149678045651526556631321007739} a^{3} - \frac{55851702766593620093265421351144928500699}{168495672868149678045651526556631321007739} a^{2} - \frac{16810526701107901768979525428353312980657}{168495672868149678045651526556631321007739} a + \frac{81933900780038762181038080759939357036284}{168495672868149678045651526556631321007739}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 741765605490 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_7:C_3$ (as 21T7):
| A solvable group of order 63 |
| The 15 conjugacy class representatives for $C_3\times C_7:C_3$ |
| Character table for $C_3\times C_7:C_3$ |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 7.7.387790161984.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 21 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | $21$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | $21$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | $21$ | $21$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| $31$ | 31.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 31.9.6.1 | $x^{9} + 837 x^{6} + 232562 x^{3} + 21717639$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 31.9.6.1 | $x^{9} + 837 x^{6} + 232562 x^{3} + 21717639$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |