Properties

Label 21.21.4660760166...3769.1
Degree $21$
Signature $[21, 0]$
Discriminant $7^{14}\cdot 211^{18}$
Root discriminant $359.45$
Ramified primes $7, 211$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{21}$ (as 21T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-692122129, 15129157356, 18479082734, -59296509039, -78614032446, 36855850475, 62071423969, -7862755157, -18643709590, 1310509833, 2800292150, -225043591, -224432817, 24220628, 9241088, -1259964, -174768, 28400, 1434, -280, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^21 - 4*x^20 - 280*x^19 + 1434*x^18 + 28400*x^17 - 174768*x^16 - 1259964*x^15 + 9241088*x^14 + 24220628*x^13 - 224432817*x^12 - 225043591*x^11 + 2800292150*x^10 + 1310509833*x^9 - 18643709590*x^8 - 7862755157*x^7 + 62071423969*x^6 + 36855850475*x^5 - 78614032446*x^4 - 59296509039*x^3 + 18479082734*x^2 + 15129157356*x - 692122129)
 
gp: K = bnfinit(x^21 - 4*x^20 - 280*x^19 + 1434*x^18 + 28400*x^17 - 174768*x^16 - 1259964*x^15 + 9241088*x^14 + 24220628*x^13 - 224432817*x^12 - 225043591*x^11 + 2800292150*x^10 + 1310509833*x^9 - 18643709590*x^8 - 7862755157*x^7 + 62071423969*x^6 + 36855850475*x^5 - 78614032446*x^4 - 59296509039*x^3 + 18479082734*x^2 + 15129157356*x - 692122129, 1)
 

Normalized defining polynomial

\( x^{21} - 4 x^{20} - 280 x^{19} + 1434 x^{18} + 28400 x^{17} - 174768 x^{16} - 1259964 x^{15} + 9241088 x^{14} + 24220628 x^{13} - 224432817 x^{12} - 225043591 x^{11} + 2800292150 x^{10} + 1310509833 x^{9} - 18643709590 x^{8} - 7862755157 x^{7} + 62071423969 x^{6} + 36855850475 x^{5} - 78614032446 x^{4} - 59296509039 x^{3} + 18479082734 x^{2} + 15129157356 x - 692122129 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $21$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[21, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(466076016634532996579786361302348154829875801567723769=7^{14}\cdot 211^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $359.45$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 211$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1477=7\cdot 211\)
Dirichlet character group:    $\lbrace$$\chi_{1477}(1,·)$, $\chi_{1477}(967,·)$, $\chi_{1477}(1226,·)$, $\chi_{1477}(781,·)$, $\chi_{1477}(144,·)$, $\chi_{1477}(212,·)$, $\chi_{1477}(1465,·)$, $\chi_{1477}(1437,·)$, $\chi_{1477}(1178,·)$, $\chi_{1477}(988,·)$, $\chi_{1477}(58,·)$, $\chi_{1477}(410,·)$, $\chi_{1477}(480,·)$, $\chi_{1477}(1254,·)$, $\chi_{1477}(359,·)$, $\chi_{1477}(1324,·)$, $\chi_{1477}(1199,·)$, $\chi_{1477}(148,·)$, $\chi_{1477}(634,·)$, $\chi_{1477}(123,·)$, $\chi_{1477}(382,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{19} a^{15} + \frac{2}{19} a^{14} - \frac{6}{19} a^{13} + \frac{1}{19} a^{12} + \frac{9}{19} a^{11} + \frac{9}{19} a^{10} - \frac{3}{19} a^{9} - \frac{1}{19} a^{8} + \frac{4}{19} a^{7} + \frac{4}{19} a^{6} - \frac{5}{19} a^{5} - \frac{9}{19} a^{4} - \frac{7}{19} a^{3} + \frac{3}{19} a^{2} - \frac{1}{19}$, $\frac{1}{19} a^{16} + \frac{9}{19} a^{14} - \frac{6}{19} a^{13} + \frac{7}{19} a^{12} - \frac{9}{19} a^{11} - \frac{2}{19} a^{10} + \frac{5}{19} a^{9} + \frac{6}{19} a^{8} - \frac{4}{19} a^{7} + \frac{6}{19} a^{6} + \frac{1}{19} a^{5} - \frac{8}{19} a^{4} - \frac{2}{19} a^{3} - \frac{6}{19} a^{2} - \frac{1}{19} a + \frac{2}{19}$, $\frac{1}{19} a^{17} - \frac{5}{19} a^{14} + \frac{4}{19} a^{13} + \frac{1}{19} a^{12} - \frac{7}{19} a^{11} - \frac{5}{19} a^{9} + \frac{5}{19} a^{8} + \frac{8}{19} a^{7} + \frac{3}{19} a^{6} - \frac{1}{19} a^{5} + \frac{3}{19} a^{4} - \frac{9}{19} a^{2} + \frac{2}{19} a + \frac{9}{19}$, $\frac{1}{1137511} a^{18} - \frac{590}{1137511} a^{17} - \frac{8479}{1137511} a^{16} + \frac{24185}{1137511} a^{15} + \frac{266008}{1137511} a^{14} - \frac{557242}{1137511} a^{13} - \frac{144782}{1137511} a^{12} + \frac{487106}{1137511} a^{11} + \frac{257957}{1137511} a^{10} + \frac{180723}{1137511} a^{9} - \frac{518901}{1137511} a^{8} + \frac{247996}{1137511} a^{7} - \frac{476447}{1137511} a^{6} + \frac{514941}{1137511} a^{5} + \frac{456998}{1137511} a^{4} + \frac{480794}{1137511} a^{3} - \frac{503146}{1137511} a^{2} + \frac{519396}{1137511} a - \frac{223728}{1137511}$, $\frac{1}{80763281} a^{19} + \frac{21}{80763281} a^{18} + \frac{1427101}{80763281} a^{17} + \frac{1728451}{80763281} a^{16} - \frac{1899884}{80763281} a^{15} - \frac{30505189}{80763281} a^{14} - \frac{23972503}{80763281} a^{13} + \frac{29248806}{80763281} a^{12} + \frac{6018348}{80763281} a^{11} - \frac{34626516}{80763281} a^{10} + \frac{15549308}{80763281} a^{9} + \frac{15472435}{80763281} a^{8} + \frac{31430847}{80763281} a^{7} + \frac{1147461}{80763281} a^{6} + \frac{1613070}{4250699} a^{5} + \frac{16223103}{80763281} a^{4} - \frac{7998820}{80763281} a^{3} + \frac{34111014}{80763281} a^{2} + \frac{1018908}{80763281} a + \frac{144797}{1137511}$, $\frac{1}{12422263428479961217920940031214311968146110647730233779849569241860932221011665899245908957} a^{20} + \frac{51164213101166551918533838097890503252646724297586715358908838069229087642179396434}{12422263428479961217920940031214311968146110647730233779849569241860932221011665899245908957} a^{19} + \frac{1688268726706608498747343768437912618674434285680665942337925721675864611942626192750}{12422263428479961217920940031214311968146110647730233779849569241860932221011665899245908957} a^{18} + \frac{298704402620816386853051179285013312672373362233822425151647714435681640564230767306374946}{12422263428479961217920940031214311968146110647730233779849569241860932221011665899245908957} a^{17} + \frac{257870884072483526482570574436998416845250114610102566246300334800923764206855957217233396}{12422263428479961217920940031214311968146110647730233779849569241860932221011665899245908957} a^{16} - \frac{186561106754283051922393927815528673996566525706281238134514138070708653854112042157638096}{12422263428479961217920940031214311968146110647730233779849569241860932221011665899245908957} a^{15} + \frac{4118607264805276051843254115014069530509592375115124579528044932452813042996915538162557013}{12422263428479961217920940031214311968146110647730233779849569241860932221011665899245908957} a^{14} + \frac{2158767482361338256971218803929867678840581482779804950279536207598617992111571102832723502}{12422263428479961217920940031214311968146110647730233779849569241860932221011665899245908957} a^{13} + \frac{4019065789847497613529768988780239608235837900928282287613186454149152026116773438784937185}{12422263428479961217920940031214311968146110647730233779849569241860932221011665899245908957} a^{12} + \frac{11617115940508852115246725291866186991793936345717191153583264686424939890152658849245190}{12422263428479961217920940031214311968146110647730233779849569241860932221011665899245908957} a^{11} - \frac{2405979759303938463046329735502280579149246455203449453596202902514256607008703783808444993}{12422263428479961217920940031214311968146110647730233779849569241860932221011665899245908957} a^{10} - \frac{1335633130259334357370618814970613152266141647864920432157913302471463976390600523394954642}{12422263428479961217920940031214311968146110647730233779849569241860932221011665899245908957} a^{9} + \frac{1813982917553901876452966442465899030753789817435195339526155784431452576193278123420142370}{12422263428479961217920940031214311968146110647730233779849569241860932221011665899245908957} a^{8} - \frac{1688413524197248866235499526228657369344255967040891810612294328895990748163391542409131}{4772287141175551754867821756133043399210952995670470142085889067176693131391343026986519} a^{7} - \frac{5186306973901290480035675149997942593402200462603956108091596817767674686732066115850326352}{12422263428479961217920940031214311968146110647730233779849569241860932221011665899245908957} a^{6} + \frac{3563715382846751281430076601544669261185417187137855330197236918220933712141630879947102634}{12422263428479961217920940031214311968146110647730233779849569241860932221011665899245908957} a^{5} - \frac{257951167228397864876351029783414726724449535686766113566127932979101303756942010845755052}{540098409933911357300910436139752694267222202075227555645633445298301400913550691271561259} a^{4} - \frac{1810394339056597662478948240879811772093077494671630864955256517407389053323702319970061287}{12422263428479961217920940031214311968146110647730233779849569241860932221011665899245908957} a^{3} - \frac{1324246513683177183643736836197371257722027836938436692215317206001714644356914520913052154}{12422263428479961217920940031214311968146110647730233779849569241860932221011665899245908957} a^{2} - \frac{2237268379479604310261764139957104685333118244523136985356805091557081598071007245185238212}{12422263428479961217920940031214311968146110647730233779849569241860932221011665899245908957} a - \frac{76821943221577318246196334384530079269494834980561763441882065777099855279444973568334524}{174961456739154383350999155369215661523184657010284982814782665378322989028333322524590267}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $20$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 115303717001291800000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{21}$ (as 21T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 21
The 21 conjugacy class representatives for $C_{21}$
Character table for $C_{21}$ is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\), 7.7.88245939632761.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $21$ $21$ $21$ R $21$ ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ $21$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ $21$ $21$ ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ $21$ $21$ $21$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
7Data not computed
211Data not computed