Normalized defining polynomial
\( x^{21} - 90 x^{19} - 54 x^{18} + 3180 x^{17} + 3024 x^{16} - 58772 x^{15} - 67734 x^{14} + 629568 x^{13} + 784368 x^{12} - 4069848 x^{11} - 5110992 x^{10} + 15949576 x^{9} + 19347408 x^{8} - 36320292 x^{7} - 42371712 x^{6} + 42009624 x^{5} + 50881608 x^{4} - 15240528 x^{3} - 26180496 x^{2} - 5843664 x - 190728 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4539403286895028130634165104558075019264=2^{18}\cdot 3^{28}\cdot 31^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{6} a^{9} + \frac{1}{3} a^{3}$, $\frac{1}{12} a^{10} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{11} - \frac{1}{3} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{12} a^{12} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{36} a^{13} + \frac{1}{36} a^{11} - \frac{1}{18} a^{9} + \frac{1}{18} a^{7} - \frac{1}{6} a^{6} - \frac{4}{9} a^{5} - \frac{1}{2} a^{4} - \frac{1}{9} a^{3} - \frac{1}{3}$, $\frac{1}{72} a^{14} - \frac{1}{36} a^{12} - \frac{1}{36} a^{10} - \frac{2}{9} a^{8} + \frac{1}{6} a^{7} + \frac{4}{9} a^{6} - \frac{1}{2} a^{5} + \frac{4}{9} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{2232} a^{15} + \frac{7}{1116} a^{14} + \frac{7}{1116} a^{13} - \frac{5}{279} a^{12} - \frac{23}{1116} a^{11} - \frac{5}{1116} a^{10} - \frac{13}{186} a^{9} - \frac{107}{558} a^{8} - \frac{41}{558} a^{7} - \frac{161}{558} a^{6} - \frac{61}{279} a^{5} + \frac{265}{558} a^{4} + \frac{137}{558} a^{3} + \frac{28}{93} a^{2} + \frac{1}{186} a - \frac{44}{93}$, $\frac{1}{2232} a^{16} + \frac{1}{558} a^{14} + \frac{1}{186} a^{13} - \frac{11}{558} a^{12} - \frac{2}{93} a^{11} - \frac{2}{279} a^{10} + \frac{2}{31} a^{9} - \frac{2}{9} a^{8} - \frac{7}{186} a^{7} + \frac{43}{279} a^{6} - \frac{7}{93} a^{5} + \frac{3}{31} a^{4} + \frac{13}{31} a^{3} - \frac{13}{62} a^{2} + \frac{14}{31} a + \frac{9}{31}$, $\frac{1}{6696} a^{17} + \frac{1}{372} a^{14} + \frac{1}{279} a^{13} - \frac{1}{558} a^{12} - \frac{10}{837} a^{11} + \frac{5}{558} a^{10} - \frac{41}{558} a^{9} + \frac{53}{558} a^{8} + \frac{73}{558} a^{7} + \frac{59}{279} a^{6} - \frac{349}{837} a^{5} + \frac{131}{279} a^{4} + \frac{233}{558} a^{3} + \frac{23}{279} a^{2} - \frac{2}{93} a + \frac{7}{93}$, $\frac{1}{14322744} a^{18} + \frac{37}{530472} a^{17} + \frac{229}{1591416} a^{16} + \frac{659}{4774248} a^{15} + \frac{7985}{2387124} a^{14} - \frac{7799}{795708} a^{13} + \frac{185561}{7161372} a^{12} - \frac{7685}{795708} a^{11} + \frac{59}{12834} a^{10} - \frac{23471}{596781} a^{9} - \frac{116228}{596781} a^{8} - \frac{32869}{198927} a^{7} - \frac{870887}{3580686} a^{6} - \frac{117749}{397854} a^{5} + \frac{5737}{22103} a^{4} + \frac{196499}{1193562} a^{3} + \frac{21755}{132618} a^{2} + \frac{41893}{132618} a - \frac{2446}{198927}$, $\frac{1}{472650552} a^{19} + \frac{1}{52516728} a^{18} + \frac{1567}{52516728} a^{17} + \frac{5009}{157550184} a^{16} + \frac{24511}{157550184} a^{15} - \frac{35807}{8752788} a^{14} + \frac{631507}{118162638} a^{13} - \frac{806191}{26258364} a^{12} - \frac{131965}{8752788} a^{11} + \frac{2605255}{78775092} a^{10} + \frac{1002802}{19693773} a^{9} + \frac{937151}{4376394} a^{8} + \frac{982516}{5371029} a^{7} + \frac{2709506}{6564591} a^{6} + \frac{1796488}{6564591} a^{5} - \frac{9552671}{19693773} a^{4} + \frac{1235734}{6564591} a^{3} + \frac{985333}{4376394} a^{2} + \frac{6353}{570834} a - \frac{677999}{2188197}$, $\frac{1}{709519998036107407248} a^{20} + \frac{21099232169}{88689999754513425906} a^{19} + \frac{724807707145}{29563333251504475302} a^{18} - \frac{1637141170648399}{59126666503008950604} a^{17} + \frac{166439601384613}{1642407402861359739} a^{16} + \frac{586432966563947}{5375151500273540964} a^{15} + \frac{211577510835876269}{88689999754513425906} a^{14} + \frac{1440754812095882215}{177379999509026851812} a^{13} - \frac{1088238148768049035}{59126666503008950604} a^{12} - \frac{4877735683083682}{122162534097125931} a^{11} + \frac{588552194661527002}{14781666625752237651} a^{10} - \frac{1013063636359803505}{14781666625752237651} a^{9} + \frac{13350198759721869599}{88689999754513425906} a^{8} + \frac{3995543307309689339}{88689999754513425906} a^{7} - \frac{12181085859945257641}{59126666503008950604} a^{6} - \frac{7717258874028772787}{29563333251504475302} a^{5} - \frac{2333852369804210515}{14781666625752237651} a^{4} + \frac{450388403082077054}{1642407402861359739} a^{3} - \frac{2328277153796649779}{4927222208584079217} a^{2} - \frac{2196041670172519238}{4927222208584079217} a - \frac{460778474401616609}{1642407402861359739}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 65890265440600 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 21 |
| The 5 conjugacy class representatives for $C_7:C_3$ |
| Character table for $C_7:C_3$ |
Intermediate fields
| 3.3.77841.1, 7.7.387790161984.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.7.387790161984.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| $31$ | 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |