Normalized defining polynomial
\( x^{21} - 6 x^{20} - 45 x^{19} + 304 x^{18} + 681 x^{17} - 5892 x^{16} - 2835 x^{15} + 55011 x^{14} - 24204 x^{13} - 253860 x^{12} + 274332 x^{11} + 500406 x^{10} - 903062 x^{9} - 112956 x^{8} + 1002705 x^{7} - 558462 x^{6} - 98895 x^{5} + 163020 x^{4} - 32917 x^{3} - 5658 x^{2} + 2316 x - 173 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4443788844232727236822935152611411648255209=3^{32}\cdot 547^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $107.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 547$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{9} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{63} a^{16} - \frac{1}{9} a^{15} + \frac{4}{21} a^{14} - \frac{1}{21} a^{12} - \frac{4}{21} a^{11} - \frac{13}{63} a^{10} + \frac{19}{63} a^{9} - \frac{1}{21} a^{8} - \frac{11}{63} a^{7} - \frac{16}{63} a^{6} + \frac{1}{21} a^{5} - \frac{26}{63} a^{4} + \frac{23}{63} a^{3} + \frac{4}{21} a^{2} - \frac{5}{63} a + \frac{26}{63}$, $\frac{1}{63} a^{17} + \frac{5}{63} a^{15} + \frac{1}{3} a^{14} - \frac{1}{21} a^{13} + \frac{10}{21} a^{12} + \frac{29}{63} a^{11} - \frac{1}{7} a^{10} + \frac{25}{63} a^{9} + \frac{31}{63} a^{8} - \frac{10}{21} a^{7} - \frac{4}{63} a^{6} - \frac{5}{63} a^{5} + \frac{10}{21} a^{4} + \frac{26}{63} a^{3} + \frac{16}{63} a^{2} - \frac{1}{7} a - \frac{4}{9}$, $\frac{1}{189} a^{18} - \frac{4}{27} a^{15} + \frac{10}{63} a^{13} - \frac{82}{189} a^{12} - \frac{25}{63} a^{11} + \frac{10}{21} a^{10} + \frac{83}{189} a^{9} - \frac{26}{63} a^{8} + \frac{17}{63} a^{7} + \frac{2}{7} a^{6} + \frac{5}{63} a^{5} + \frac{31}{63} a^{4} - \frac{19}{63} a^{3} + \frac{19}{63} a^{2} - \frac{1}{63} a - \frac{25}{189}$, $\frac{1}{567} a^{19} - \frac{1}{567} a^{18} - \frac{1}{567} a^{16} - \frac{5}{81} a^{15} - \frac{71}{189} a^{14} + \frac{11}{81} a^{13} - \frac{263}{567} a^{12} + \frac{10}{189} a^{11} + \frac{209}{567} a^{10} - \frac{152}{567} a^{9} + \frac{16}{189} a^{8} - \frac{5}{27} a^{7} + \frac{11}{189} a^{6} - \frac{73}{189} a^{5} - \frac{32}{189} a^{4} + \frac{5}{27} a^{3} - \frac{38}{189} a^{2} + \frac{221}{567} a + \frac{97}{567}$, $\frac{1}{63196929585779841750642861672651159} a^{20} - \frac{55339943572716551885623288252936}{63196929585779841750642861672651159} a^{19} + \frac{1123815558607178393913333159616}{3009377599322849607173469603459579} a^{18} - \frac{439363362661291936255363157895103}{63196929585779841750642861672651159} a^{17} + \frac{248642437099826764361044332072535}{63196929585779841750642861672651159} a^{16} + \frac{35010981384766914097564450751369}{1003125866440949869057823201153193} a^{15} + \frac{21039692888786697684853744677808226}{63196929585779841750642861672651159} a^{14} - \frac{14897097515253201116366905501160708}{63196929585779841750642861672651159} a^{13} + \frac{1072200071084336689799912320041949}{2340627021695549694468254136024117} a^{12} + \frac{7575678765613085160149113636421984}{63196929585779841750642861672651159} a^{11} - \frac{13767221246072411196847423344569765}{63196929585779841750642861672651159} a^{10} - \frac{2058051329505299364587463627068303}{7021881065086649083404762408072351} a^{9} + \frac{6578188016089499219386880620569469}{21065643195259947250214287224217053} a^{8} + \frac{9672573553023186442078965808025369}{21065643195259947250214287224217053} a^{7} + \frac{1303273655199764134089733147046264}{3009377599322849607173469603459579} a^{6} - \frac{4418690282144995968691447097166065}{21065643195259947250214287224217053} a^{5} - \frac{1693723486633115995396230284674528}{21065643195259947250214287224217053} a^{4} - \frac{652312062931250150234138840216975}{21065643195259947250214287224217053} a^{3} + \frac{15845967055953022542067197090190274}{63196929585779841750642861672651159} a^{2} - \frac{29325731449248580692629600273487095}{63196929585779841750642861672651159} a - \frac{7001879303915907236476000286204584}{21065643195259947250214287224217053}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 406277532862000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$A_7$ (as 21T33):
| A non-solvable group of order 2520 |
| The 9 conjugacy class representatives for $A_7$ |
| Character table for $A_7$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 7 sibling: | data not computed |
| Degree 15 siblings: | data not computed |
| Degree 35 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.8.1 | $x^{6} + 6 x^{5} + 18 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_3^2:C_4$ | $[2, 2]^{4}$ |
| 3.6.8.1 | $x^{6} + 6 x^{5} + 18 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_3^2:C_4$ | $[2, 2]^{4}$ | |
| 3.9.16.4 | $x^{9} + 3 x^{8} + 3$ | $9$ | $1$ | $16$ | $C_3^2:C_4$ | $[2, 2]^{4}$ | |
| 547 | Data not computed | ||||||