Normalized defining polynomial
\( x^{21} - 10 x^{20} - 185 x^{19} + 2048 x^{18} + 11780 x^{17} - 148400 x^{16} - 376864 x^{15} + 4993868 x^{14} + 10085581 x^{13} - 88217270 x^{12} - 235421449 x^{11} + 694162444 x^{10} + 3247714880 x^{9} + 1296897876 x^{8} - 15200766300 x^{7} - 41610358520 x^{6} - 55556103530 x^{5} - 45022861668 x^{4} - 23163083450 x^{3} - 7416591832 x^{2} - 1351360120 x - 107204248 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4127760587616116853629151942599591012666695932109781991424=2^{44}\cdot 809^{6}\cdot 4201^{2}\cdot 39367^{2}\cdot 174931^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $554.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 809, 4201, 39367, 174931$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{596} a^{18} + \frac{17}{596} a^{17} - \frac{25}{596} a^{16} - \frac{69}{596} a^{15} + \frac{21}{596} a^{14} - \frac{91}{596} a^{13} - \frac{3}{596} a^{12} + \frac{167}{596} a^{11} - \frac{71}{298} a^{10} + \frac{121}{298} a^{9} + \frac{72}{149} a^{8} - \frac{77}{298} a^{7} + \frac{141}{298} a^{6} + \frac{27}{298} a^{5} - \frac{79}{298} a^{4} - \frac{83}{298} a^{3} - \frac{26}{149} a^{2} + \frac{19}{149} a - \frac{69}{149}$, $\frac{1}{596} a^{19} - \frac{4}{149} a^{17} + \frac{29}{298} a^{16} + \frac{1}{298} a^{15} + \frac{37}{149} a^{14} + \frac{27}{298} a^{13} - \frac{20}{149} a^{12} - \frac{1}{596} a^{11} + \frac{68}{149} a^{10} - \frac{125}{298} a^{9} - \frac{141}{298} a^{8} - \frac{20}{149} a^{7} + \frac{7}{149} a^{6} + \frac{29}{149} a^{5} + \frac{34}{149} a^{4} - \frac{131}{298} a^{3} + \frac{14}{149} a^{2} + \frac{55}{149} a - \frac{19}{149}$, $\frac{1}{768654057351691437699220400724397277912928883805567804} a^{20} - \frac{17265306527900409258506091292658279278948306266257}{384327028675845718849610200362198638956464441902783902} a^{19} - \frac{641772798532142947945874403982609696528280890591785}{768654057351691437699220400724397277912928883805567804} a^{18} - \frac{21373339241486700796634597462991755451688931371143585}{192163514337922859424805100181099319478232220951391951} a^{17} - \frac{38826297355991865216990446804382800070364004195961259}{192163514337922859424805100181099319478232220951391951} a^{16} - \frac{58504931288366744947693288467439007245578071384179365}{384327028675845718849610200362198638956464441902783902} a^{15} + \frac{71979704524876932299571605423824384081814443480511117}{384327028675845718849610200362198638956464441902783902} a^{14} + \frac{20390580129724420753517488904027608420978797421972054}{192163514337922859424805100181099319478232220951391951} a^{13} + \frac{148091011202270340043582951734521645567536298184503793}{768654057351691437699220400724397277912928883805567804} a^{12} + \frac{81701225066659673412385279816055340862295495030276654}{192163514337922859424805100181099319478232220951391951} a^{11} + \frac{235672042990433979033087008539482044894075346218605933}{768654057351691437699220400724397277912928883805567804} a^{10} - \frac{88336854567793945073437150318441794520887899751108149}{192163514337922859424805100181099319478232220951391951} a^{9} + \frac{29887667921595125105908193546744586652963110740641054}{192163514337922859424805100181099319478232220951391951} a^{8} + \frac{49310655736399572999974761087788929304853091983751741}{192163514337922859424805100181099319478232220951391951} a^{7} + \frac{22148150727489240151282046184984520966445599606327256}{192163514337922859424805100181099319478232220951391951} a^{6} + \frac{46998850377676057075699247176738529564976394173027298}{192163514337922859424805100181099319478232220951391951} a^{5} - \frac{92237913351057299781172297571406173993177695396258201}{384327028675845718849610200362198638956464441902783902} a^{4} + \frac{95042380870076208537152220124737795666523971392131745}{192163514337922859424805100181099319478232220951391951} a^{3} + \frac{15939515400856190083498326045646466954490610688271291}{384327028675845718849610200362198638956464441902783902} a^{2} + \frac{37421948881369323073671647330017715095412850043620596}{192163514337922859424805100181099319478232220951391951} a + \frac{39282895197409068387413932672468865467430008085082232}{192163514337922859424805100181099319478232220951391951}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 56165736077500000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 23514624 |
| The 132 conjugacy class representatives for t21n145 are not computed |
| Character table for t21n145 is not computed |
Intermediate fields
| 7.7.670188544.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | $21$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ | $21$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.4.8.8 | $x^{4} + 4 x + 2$ | $4$ | $1$ | $8$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.6.10.5 | $x^{6} + 2 x^{5} + 6$ | $6$ | $1$ | $10$ | $S_4\times C_2$ | $[2, 8/3, 8/3]_{3}^{2}$ | |
| 2.8.24.132 | $x^{8} + 12 x^{2} + 8 x + 10$ | $8$ | $1$ | $24$ | $C_2 \wr S_4$ | $[2, 8/3, 8/3, 10/3, 10/3, 4]_{3}^{2}$ | |
| 809 | Data not computed | ||||||
| 4201 | Data not computed | ||||||
| 39367 | Data not computed | ||||||
| 174931 | Data not computed | ||||||