Normalized defining polynomial
\( x^{21} - 5 x^{20} - 63 x^{19} + 346 x^{18} + 1377 x^{17} - 8838 x^{16} - 12180 x^{15} + 107597 x^{14} + 26142 x^{13} - 675808 x^{12} + 238721 x^{11} + 2184149 x^{10} - 1549027 x^{9} - 3422708 x^{8} + 3271777 x^{7} + 2382104 x^{6} - 2931914 x^{5} - 581659 x^{4} + 1163183 x^{3} - 57751 x^{2} - 168018 x + 32573 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(40038978752353387663316403260542418944=2^{18}\cdot 199^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 199$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{6} a^{18} - \frac{1}{6} a^{17} + \frac{1}{6} a^{15} + \frac{1}{6} a^{13} - \frac{1}{6} a^{12} - \frac{1}{6} a^{11} - \frac{1}{6} a^{10} + \frac{1}{3} a^{9} - \frac{1}{6} a^{8} + \frac{1}{3} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} - \frac{1}{6} a^{3} + \frac{1}{6} a^{2} + \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{942} a^{19} + \frac{9}{314} a^{18} + \frac{16}{471} a^{17} + \frac{116}{471} a^{16} - \frac{107}{942} a^{15} + \frac{85}{942} a^{14} + \frac{22}{157} a^{13} - \frac{173}{942} a^{12} + \frac{212}{471} a^{11} + \frac{179}{471} a^{10} - \frac{181}{471} a^{9} - \frac{239}{942} a^{8} - \frac{317}{942} a^{7} - \frac{139}{314} a^{6} - \frac{232}{471} a^{5} - \frac{191}{471} a^{4} - \frac{46}{157} a^{3} + \frac{78}{157} a^{2} + \frac{28}{157} a - \frac{299}{942}$, $\frac{1}{76330959815693555773593125710767850752500814} a^{20} - \frac{16258561590900340073356581077476149605117}{76330959815693555773593125710767850752500814} a^{19} - \frac{3857956606732653154143474102630626630367979}{76330959815693555773593125710767850752500814} a^{18} + \frac{6058819603648083245005403422756238711280645}{25443653271897851924531041903589283584166938} a^{17} + \frac{3353774836082551306558146094429130549948677}{38165479907846777886796562855383925376250407} a^{16} - \frac{2560965682898077069226101998746710431192137}{38165479907846777886796562855383925376250407} a^{15} - \frac{12343336893043994148168457253166584580528881}{76330959815693555773593125710767850752500814} a^{14} + \frac{2357812671621815176842288046595300592300668}{38165479907846777886796562855383925376250407} a^{13} + \frac{16861516073778377737005465543225980988133061}{76330959815693555773593125710767850752500814} a^{12} - \frac{24337672123389951416049004983252774901152547}{76330959815693555773593125710767850752500814} a^{11} - \frac{460899465753298650116837677043954841873188}{38165479907846777886796562855383925376250407} a^{10} + \frac{28166235474120992321331431346551974195468085}{76330959815693555773593125710767850752500814} a^{9} + \frac{21990713831980150225170803828988625570967555}{76330959815693555773593125710767850752500814} a^{8} + \frac{33993562160597689861219923416730911565375421}{76330959815693555773593125710767850752500814} a^{7} - \frac{13060227348952522251275870267828946146537759}{76330959815693555773593125710767850752500814} a^{6} - \frac{10876494973189878023243668582098683861832605}{25443653271897851924531041903589283584166938} a^{5} - \frac{26335598729758317519941725799117456066806915}{76330959815693555773593125710767850752500814} a^{4} - \frac{718422974596760574415879647778615511252267}{25443653271897851924531041903589283584166938} a^{3} - \frac{583639765269134260239205958645423037201575}{12721826635948925962265520951794641792083469} a^{2} + \frac{25496780491916067029224361095945191868268899}{76330959815693555773593125710767850752500814} a + \frac{10783699333090150880835003363578249164396949}{38165479907846777886796562855383925376250407}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1272666465930 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 21 |
| The 5 conjugacy class representatives for $C_7:C_3$ |
| Character table for $C_7:C_3$ |
Intermediate fields
| 3.3.39601.1, 7.7.100367308864.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.7.100367308864.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $199$ | 199.3.2.1 | $x^{3} - 199$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 199.3.2.1 | $x^{3} - 199$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 199.3.2.1 | $x^{3} - 199$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 199.3.2.1 | $x^{3} - 199$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 199.3.2.1 | $x^{3} - 199$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 199.3.2.1 | $x^{3} - 199$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 199.3.2.1 | $x^{3} - 199$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |