Normalized defining polynomial
\( x^{21} - 2 x^{20} - 282 x^{19} + 694 x^{18} + 30404 x^{17} - 105605 x^{16} - 1633526 x^{15} + 8001442 x^{14} + 43406927 x^{13} - 323471967 x^{12} - 311640039 x^{11} + 6828869520 x^{10} - 11031544345 x^{9} - 58942412407 x^{8} + 255366050655 x^{7} - 161340667892 x^{6} - 1232149331283 x^{5} + 4037136262928 x^{4} - 6050548121526 x^{3} + 5086865996131 x^{2} - 2320345259596 x + 448730689991 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(39789360310386150000506731885847486112966444380908203125=5^{11}\cdot 6679^{6}\cdot 3029801137501^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $444.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 6679, 3029801137501$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} - \frac{2}{5} a^{15} - \frac{2}{5} a^{14} - \frac{1}{5} a^{13} - \frac{1}{5} a^{12} + \frac{2}{5} a^{11} - \frac{2}{5} a^{9} + \frac{1}{5} a^{7} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{17} - \frac{1}{5} a^{15} + \frac{2}{5} a^{13} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{5} a^{5} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{18} - \frac{2}{5} a^{15} - \frac{1}{5} a^{13} - \frac{2}{5} a^{12} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{4} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{25} a^{19} + \frac{2}{25} a^{18} + \frac{2}{25} a^{17} - \frac{1}{25} a^{16} + \frac{7}{25} a^{15} - \frac{3}{25} a^{14} - \frac{1}{25} a^{13} + \frac{2}{5} a^{12} + \frac{6}{25} a^{11} + \frac{2}{25} a^{10} - \frac{1}{5} a^{9} + \frac{12}{25} a^{8} + \frac{8}{25} a^{7} + \frac{7}{25} a^{6} - \frac{4}{25} a^{5} - \frac{6}{25} a^{4} - \frac{6}{25} a^{3} + \frac{3}{25} a^{2} - \frac{1}{5} a - \frac{1}{25}$, $\frac{1}{57862204131559656741913278101834556599757521452071253853162295105848323845278406325} a^{20} + \frac{726729687976806024956017292042543220736635469892521666314042251396906684947601554}{57862204131559656741913278101834556599757521452071253853162295105848323845278406325} a^{19} - \frac{2773136806029201102707371038339583777097088323607624758172475906932535595591520534}{57862204131559656741913278101834556599757521452071253853162295105848323845278406325} a^{18} - \frac{3774534724272954327252109771187250283360139817084004180090424781353517197343385872}{57862204131559656741913278101834556599757521452071253853162295105848323845278406325} a^{17} + \frac{913469932301910137212251821259426829085264750600448560771867024270027595298842232}{11572440826311931348382655620366911319951504290414250770632459021169664769055681265} a^{16} - \frac{20421603558754602244773924635035076641473551740823925458104656386342012768220409944}{57862204131559656741913278101834556599757521452071253853162295105848323845278406325} a^{15} + \frac{262287953607100889324583958804469116115389010524823048619077860104213486122476333}{57862204131559656741913278101834556599757521452071253853162295105848323845278406325} a^{14} - \frac{22634605993457461755054451258044755523783344726674773133285660923912664167458433082}{57862204131559656741913278101834556599757521452071253853162295105848323845278406325} a^{13} - \frac{6705986032433766899978135121305594990669375532095928296435448672724400985424239949}{57862204131559656741913278101834556599757521452071253853162295105848323845278406325} a^{12} - \frac{18046636893790719646707863894356543547610887155106229728769419068254536419886934726}{57862204131559656741913278101834556599757521452071253853162295105848323845278406325} a^{11} - \frac{9115958519814681146429831804439931421802836150596908866699050937490952221807380466}{57862204131559656741913278101834556599757521452071253853162295105848323845278406325} a^{10} - \frac{17146306970315635575936851824625637332879383918582199630641780492843132605271210318}{57862204131559656741913278101834556599757521452071253853162295105848323845278406325} a^{9} + \frac{23206499711540932080996087794552506055125402685196598618518179806472884355592280377}{57862204131559656741913278101834556599757521452071253853162295105848323845278406325} a^{8} + \frac{25774506223178807466109450730854692749465930764317770604713865464873111249491210188}{57862204131559656741913278101834556599757521452071253853162295105848323845278406325} a^{7} - \frac{3548780966806346402263380835969040015861683972229160987377966156796631881934576471}{11572440826311931348382655620366911319951504290414250770632459021169664769055681265} a^{6} + \frac{837482436922490609198519608917142878844875813266657203494844361794469785028257336}{57862204131559656741913278101834556599757521452071253853162295105848323845278406325} a^{5} - \frac{16299007943390868457654288321972047759454880917342705526668620020011794869870028123}{57862204131559656741913278101834556599757521452071253853162295105848323845278406325} a^{4} + \frac{1427297331684274044106999514992442081091300962704719790580924681385442725462056531}{57862204131559656741913278101834556599757521452071253853162295105848323845278406325} a^{3} + \frac{7849647834814316188032156801037780247351814997640009836030415284589658593008163936}{57862204131559656741913278101834556599757521452071253853162295105848323845278406325} a^{2} + \frac{11276999591687940835396535928065651916473722340476115477312324813837315408403190099}{57862204131559656741913278101834556599757521452071253853162295105848323845278406325} a + \frac{8615014759049899600925938827257632565616389971290328439063313517486787251507719503}{57862204131559656741913278101834556599757521452071253853162295105848323845278406325}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 782125537714000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 11022480 |
| The 150 conjugacy class representatives for t21n140 are not computed |
| Character table for t21n140 is not computed |
Intermediate fields
| 7.7.1115226025.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }{,}\,{\href{/LocalNumberField/2.7.0.1}{7} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.6.5.2 | $x^{6} + 10$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 6679 | Data not computed | ||||||
| 3029801137501 | Data not computed | ||||||