Normalized defining polynomial
\( x^{21} - 3 x^{20} - 198 x^{19} + 415 x^{18} + 15879 x^{17} - 16779 x^{16} - 665196 x^{15} - 7383 x^{14} + 15300921 x^{13} + 15483570 x^{12} - 181736895 x^{11} - 349626786 x^{10} + 881813437 x^{9} + 2667813231 x^{8} - 254106018 x^{7} - 5442055226 x^{6} - 2142757218 x^{5} + 3764283285 x^{4} + 1543507294 x^{3} - 828477006 x^{2} - 96455373 x + 3324797 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3919222256983996499704582149784632135677558495355107961=3^{28}\cdot 7^{14}\cdot 43^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $397.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2709=3^{2}\cdot 7\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2709}(64,·)$, $\chi_{2709}(1,·)$, $\chi_{2709}(1411,·)$, $\chi_{2709}(1159,·)$, $\chi_{2709}(1096,·)$, $\chi_{2709}(1033,·)$, $\chi_{2709}(907,·)$, $\chi_{2709}(2578,·)$, $\chi_{2709}(2515,·)$, $\chi_{2709}(2452,·)$, $\chi_{2709}(2326,·)$, $\chi_{2709}(2584,·)$, $\chi_{2709}(1822,·)$, $\chi_{2709}(2080,·)$, $\chi_{2709}(1129,·)$, $\chi_{2709}(1387,·)$, $\chi_{2709}(403,·)$, $\chi_{2709}(121,·)$, $\chi_{2709}(2419,·)$, $\chi_{2709}(379,·)$, $\chi_{2709}(127,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{14} a^{15} + \frac{1}{14} a^{14} - \frac{1}{14} a^{13} + \frac{1}{14} a^{12} + \frac{1}{7} a^{11} + \frac{3}{7} a^{10} - \frac{2}{7} a^{9} + \frac{1}{14} a^{8} + \frac{1}{7} a^{7} + \frac{3}{7} a^{6} - \frac{1}{14} a^{5} - \frac{1}{14} a^{4} - \frac{3}{7} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{14} a^{16} - \frac{1}{7} a^{14} + \frac{1}{7} a^{13} + \frac{1}{14} a^{12} + \frac{2}{7} a^{11} + \frac{2}{7} a^{10} + \frac{5}{14} a^{9} + \frac{1}{14} a^{8} + \frac{2}{7} a^{7} - \frac{1}{2} a^{6} - \frac{5}{14} a^{4} - \frac{1}{14} a^{3} - \frac{1}{2} a$, $\frac{1}{98} a^{17} + \frac{1}{49} a^{16} - \frac{11}{98} a^{13} - \frac{10}{49} a^{12} + \frac{1}{49} a^{11} + \frac{39}{98} a^{10} - \frac{11}{98} a^{9} - \frac{17}{49} a^{8} - \frac{23}{98} a^{7} - \frac{22}{49} a^{6} - \frac{3}{14} a^{5} - \frac{41}{98} a^{4} - \frac{2}{7} a^{3} - \frac{3}{14} a^{2} - \frac{2}{7} a$, $\frac{1}{98} a^{18} + \frac{3}{98} a^{16} + \frac{12}{49} a^{14} - \frac{33}{98} a^{13} + \frac{1}{7} a^{11} + \frac{37}{98} a^{10} + \frac{23}{98} a^{9} - \frac{23}{49} a^{8} - \frac{19}{98} a^{7} + \frac{9}{49} a^{6} + \frac{1}{98} a^{5} - \frac{15}{49} a^{4} - \frac{3}{14} a^{3} + \frac{1}{7} a^{2} - \frac{3}{7} a - \frac{1}{2}$, $\frac{1}{98} a^{19} + \frac{1}{98} a^{16} + \frac{3}{98} a^{15} - \frac{19}{98} a^{14} + \frac{19}{98} a^{13} + \frac{11}{98} a^{12} - \frac{16}{49} a^{11} + \frac{2}{49} a^{10} + \frac{4}{49} a^{9} - \frac{29}{98} a^{8} + \frac{12}{49} a^{7} - \frac{3}{7} a^{6} - \frac{22}{49} a^{5} + \frac{39}{98} a^{4} - \frac{2}{7} a^{3} - \frac{2}{7} a^{2} - \frac{1}{7} a - \frac{1}{2}$, $\frac{1}{487538475838852927773033618646842626543920494370189470112962511975327611011558714} a^{20} + \frac{159512307963130571788980467680318578921515114251110932193724681249966262687867}{34824176845632351983788115617631616181708606740727819293783036569666257929397051} a^{19} + \frac{306633200101197585971571085671328342005692307738128370873062661277317640579013}{487538475838852927773033618646842626543920494370189470112962511975327611011558714} a^{18} + \frac{85239513520826342620305386877649632143122814559845505392270416909509092354126}{34824176845632351983788115617631616181708606740727819293783036569666257929397051} a^{17} + \frac{13875269545032746066569072024798247836216504962687733593701552013424553295114985}{487538475838852927773033618646842626543920494370189470112962511975327611011558714} a^{16} + \frac{1514055155362856675405784844173950144588365292908429549388687979275515316678557}{243769237919426463886516809323421313271960247185094735056481255987663805505779357} a^{15} + \frac{2484558319134927226181947945377702359304283392162315695253267763430021000660413}{34824176845632351983788115617631616181708606740727819293783036569666257929397051} a^{14} + \frac{9719612124606152843434235870363339455471358452356175681332283605782768186663491}{34824176845632351983788115617631616181708606740727819293783036569666257929397051} a^{13} + \frac{78002286335770543629706330373809777163047647868109927598856031538095191677447997}{243769237919426463886516809323421313271960247185094735056481255987663805505779357} a^{12} + \frac{82419670228714134071449276981352150902304581334542482956716374431845157469071921}{243769237919426463886516809323421313271960247185094735056481255987663805505779357} a^{11} - \frac{62227128089818293219973423506072898516693632978234712686204581273723974773394250}{243769237919426463886516809323421313271960247185094735056481255987663805505779357} a^{10} - \frac{894313041585846341273536655297989847198541789221694343746790627643524414753901}{3085686555942107137804010244600269788252661356773351076664319696046377284883283} a^{9} + \frac{96224843704569877714293132841992162075274053754057898453190123181967022136806115}{243769237919426463886516809323421313271960247185094735056481255987663805505779357} a^{8} - \frac{49823060661639730044676772788193160838072578826534787455930951859722724311467897}{243769237919426463886516809323421313271960247185094735056481255987663805505779357} a^{7} - \frac{209467162030838510000371116596533164000471511616678693707102641537228605142251419}{487538475838852927773033618646842626543920494370189470112962511975327611011558714} a^{6} - \frac{7171148833612204781659840166311748281054056954687114489386500683404320459524289}{34824176845632351983788115617631616181708606740727819293783036569666257929397051} a^{5} - \frac{2314675851741499760380162551029971286028789128877579124766436643726757361267517}{9949764813037814852510890176466176051916744783065091226795153305618930836970586} a^{4} - \frac{6329974464663673669025181406564113461909730859549607081836512928595920735400897}{34824176845632351983788115617631616181708606740727819293783036569666257929397051} a^{3} - \frac{896969764935983386454244435254176470122774594172767950373502937339387859781064}{4974882406518907426255445088233088025958372391532545613397576652809465418485293} a^{2} + \frac{3641387124846430901576295793083770873272078818083599978812700360371432187580021}{9949764813037814852510890176466176051916744783065091226795153305618930836970586} a - \frac{1321621837534484423385037772855446721603216214898762312931216960559758479980109}{9949764813037814852510890176466176051916744783065091226795153305618930836970586}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 286692515494192970000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| 3.3.3969.1, 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | R | $21$ | R | $21$ | $21$ | $21$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | $21$ | R | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43 | Data not computed | ||||||