Normalized defining polynomial
\( x^{21} - 7 x^{20} - 147 x^{19} + 1099 x^{18} + 6664 x^{17} - 62440 x^{16} - 60319 x^{15} + 1538209 x^{14} - 2585002 x^{13} - 13332074 x^{12} + 55589450 x^{11} - 30887948 x^{10} - 234382540 x^{9} + 649246766 x^{8} - 737037653 x^{7} + 302292949 x^{6} + 155541057 x^{5} - 204133993 x^{4} + 45757012 x^{3} + 21272244 x^{2} - 8786043 x + 22707 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(390762838128733167622487963828338403047536241=7^{32}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $132.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{12} a^{13} - \frac{1}{12} a^{12} + \frac{1}{12} a^{11} + \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{12} a^{8} - \frac{1}{6} a^{7} + \frac{5}{12} a^{6} - \frac{5}{12} a^{5} + \frac{5}{12} a^{4} - \frac{1}{6} a^{3} + \frac{1}{6} a^{2} - \frac{5}{12} a - \frac{1}{2}$, $\frac{1}{12} a^{14} + \frac{1}{3} a + \frac{1}{4}$, $\frac{1}{24} a^{15} - \frac{1}{8} a^{11} - \frac{1}{4} a^{10} + \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{5}{24} a^{2} + \frac{3}{8}$, $\frac{1}{24} a^{16} - \frac{1}{8} a^{12} + \frac{1}{8} a^{10} + \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{5} - \frac{1}{2} a^{4} - \frac{5}{24} a^{3} + \frac{1}{4} a^{2} - \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{24} a^{17} - \frac{1}{24} a^{13} - \frac{1}{12} a^{12} - \frac{1}{24} a^{11} - \frac{5}{24} a^{10} + \frac{5}{24} a^{9} - \frac{1}{12} a^{8} + \frac{1}{12} a^{7} + \frac{7}{24} a^{6} + \frac{1}{12} a^{5} - \frac{1}{24} a^{4} - \frac{5}{12} a^{3} + \frac{1}{24} a^{2} + \frac{1}{12} a - \frac{1}{4}$, $\frac{1}{240} a^{18} - \frac{1}{60} a^{17} - \frac{1}{240} a^{16} - \frac{1}{80} a^{15} - \frac{1}{48} a^{14} + \frac{1}{30} a^{13} + \frac{1}{15} a^{12} - \frac{1}{60} a^{11} + \frac{7}{60} a^{10} + \frac{7}{30} a^{9} + \frac{1}{6} a^{8} - \frac{1}{15} a^{7} + \frac{1}{6} a^{6} - \frac{3}{10} a^{5} + \frac{1}{80} a^{4} + \frac{7}{15} a^{3} + \frac{1}{240} a^{2} + \frac{5}{16} a + \frac{7}{80}$, $\frac{1}{6960} a^{19} + \frac{143}{6960} a^{17} - \frac{17}{6960} a^{16} - \frac{67}{6960} a^{15} + \frac{9}{580} a^{14} + \frac{37}{1740} a^{13} + \frac{65}{696} a^{12} + \frac{71}{3480} a^{11} - \frac{731}{3480} a^{10} - \frac{157}{870} a^{9} - \frac{16}{435} a^{8} + \frac{53}{3480} a^{7} - \frac{181}{580} a^{6} - \frac{451}{1392} a^{5} + \frac{587}{3480} a^{4} - \frac{1621}{6960} a^{3} + \frac{769}{6960} a^{2} - \frac{1229}{6960} a + \frac{1}{40}$, $\frac{1}{11770313400137700869416829753176302561888657939380880} a^{20} + \frac{194085238805498427650323836766171743669263788207}{5885156700068850434708414876588151280944328969690440} a^{19} - \frac{3182442369288177726473992341020516801539980446117}{3923437800045900289805609917725434187296219313126960} a^{18} + \frac{9256954635785335437665622574161501933719768711251}{11770313400137700869416829753176302561888657939380880} a^{17} + \frac{134475830580816190350778745629685514789867477839089}{11770313400137700869416829753176302561888657939380880} a^{16} + \frac{22383929860997249064542954897143083408026872659983}{2942578350034425217354207438294075640472164484845220} a^{15} + \frac{20383680922603798276172297647273977680410532828207}{1177031340013770086941682975317630256188865793938088} a^{14} - \frac{1870371319836850236405507667017995904369530157455}{294257835003442521735420743829407564047216448484522} a^{13} + \frac{301081345126024320739326077532202687305966612503089}{5885156700068850434708414876588151280944328969690440} a^{12} + \frac{38866105047565992293698123588464977447086176178627}{735644587508606304338551859573518910118041121211305} a^{11} + \frac{1412714254556049273339382940016031669048212117480247}{5885156700068850434708414876588151280944328969690440} a^{10} + \frac{260653787368204975381745495307117304748356159994813}{5885156700068850434708414876588151280944328969690440} a^{9} - \frac{1118691975461023122028713385918085123166350944356869}{5885156700068850434708414876588151280944328969690440} a^{8} + \frac{205906477741240955839956525308987888083773415478137}{1471289175017212608677103719147037820236082242422610} a^{7} + \frac{2189330121393830381870281895645371205253944466457567}{11770313400137700869416829753176302561888657939380880} a^{6} - \frac{556176367522018622238872007918090896953738258660247}{2942578350034425217354207438294075640472164484845220} a^{5} - \frac{1206450924753558697694299659127479153070125880853899}{3923437800045900289805609917725434187296219313126960} a^{4} - \frac{5000018912712510415169060607600481881005332539087253}{11770313400137700869416829753176302561888657939380880} a^{3} - \frac{99123803829562162081780095935275408524212052758207}{11770313400137700869416829753176302561888657939380880} a^{2} + \frac{14871550468140052941619431377521516917406636792361}{653906300007650048300934986287572364549369885521160} a + \frac{8926127067320200463030115260627202339902427475141}{22548493103712070631066723665088702225840340880040}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13788563081500000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_7:(C_7:C_3)$ (as 21T12):
| A solvable group of order 147 |
| The 19 conjugacy class representatives for $C_7:(C_7:C_3)$ |
| Character table for $C_7:(C_7:C_3)$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 21 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.7.6.3 | $x^{7} + 928$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 29.7.6.3 | $x^{7} + 928$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |