Normalized defining polynomial
\( x^{21} - 69 x^{19} - 46 x^{18} + 1962 x^{17} + 2616 x^{16} - 28828 x^{15} - 59400 x^{14} + 217818 x^{13} + 677648 x^{12} - 584442 x^{11} - 3931212 x^{10} - 2306846 x^{9} + 9397224 x^{8} + 17247063 x^{7} + 3299494 x^{6} - 22317012 x^{5} - 33030216 x^{4} - 23464624 x^{3} - 9501408 x^{2} - 2111424 x - 201088 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(38980223886316836110432070474377320562433441792=2^{14}\cdot 3^{21}\cdot 13\cdot 577^{9}\cdot 1571^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $165.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 577, 1571$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} - \frac{1}{8} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{9} + \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{23}{64} a^{14} - \frac{15}{32} a^{12} - \frac{5}{16} a^{11} - \frac{1}{16} a^{10} + \frac{1}{4} a^{9} - \frac{3}{32} a^{8} + \frac{1}{16} a^{7} - \frac{1}{32} a^{6} - \frac{1}{4} a^{5} - \frac{7}{32} a^{4} - \frac{5}{16} a^{3} - \frac{1}{64} a^{2} - \frac{7}{16} a - \frac{1}{16}$, $\frac{1}{512} a^{17} + \frac{19}{512} a^{15} + \frac{73}{256} a^{14} - \frac{79}{256} a^{13} + \frac{21}{64} a^{12} - \frac{55}{128} a^{11} + \frac{19}{64} a^{10} - \frac{51}{256} a^{9} - \frac{3}{32} a^{8} + \frac{91}{256} a^{7} - \frac{51}{128} a^{6} + \frac{41}{256} a^{5} - \frac{23}{64} a^{4} + \frac{167}{512} a^{3} + \frac{83}{256} a^{2} + \frac{61}{128} a - \frac{15}{64}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} + \frac{19}{4096} a^{16} + \frac{27}{1024} a^{15} - \frac{737}{2048} a^{14} + \frac{249}{1024} a^{13} - \frac{267}{1024} a^{12} - \frac{27}{256} a^{11} + \frac{53}{2048} a^{10} - \frac{345}{1024} a^{9} + \frac{395}{2048} a^{8} - \frac{71}{512} a^{7} - \frac{11}{2048} a^{6} + \frac{41}{1024} a^{5} + \frac{1047}{4096} a^{4} + \frac{235}{512} a^{3} + \frac{245}{512} a^{2} - \frac{51}{128} a - \frac{113}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{23}{32768} a^{17} + \frac{35}{16384} a^{16} - \frac{845}{16384} a^{15} - \frac{1043}{4096} a^{14} - \frac{3837}{8192} a^{13} + \frac{1749}{4096} a^{12} - \frac{5659}{16384} a^{11} - \frac{711}{4096} a^{10} + \frac{5871}{16384} a^{9} + \frac{487}{8192} a^{8} - \frac{3539}{16384} a^{7} - \frac{1011}{2048} a^{6} + \frac{8911}{32768} a^{5} + \frac{3989}{16384} a^{4} - \frac{225}{4096} a^{3} + \frac{165}{2048} a^{2} - \frac{165}{2048} a + \frac{369}{1024}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} - \frac{1}{262144} a^{18} + \frac{13}{16384} a^{17} - \frac{635}{131072} a^{16} + \frac{3571}{65536} a^{15} - \frac{32737}{65536} a^{14} - \frac{6929}{16384} a^{13} - \frac{45603}{131072} a^{12} - \frac{26591}{65536} a^{11} - \frac{27577}{131072} a^{10} + \frac{429}{16384} a^{9} + \frac{2305}{131072} a^{8} - \frac{22853}{65536} a^{7} + \frac{108463}{262144} a^{6} - \frac{25599}{65536} a^{5} + \frac{19709}{65536} a^{4} + \frac{3841}{8192} a^{3} + \frac{825}{16384} a^{2} - \frac{1087}{4096} a - \frac{941}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42559653262500000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3919104 |
| The 288 conjugacy class representatives for t21n131 are not computed |
| Character table for t21n131 is not computed |
Intermediate fields
| 7.7.192100033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | $21$ | $21$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.6 | $x^{14} - 3 x^{12} + 4 x^{11} - 2 x^{10} + 4 x^{9} - 2 x^{8} + 4 x^{6} - 2 x^{5} - 2 x^{4} + 2 x^{2} - 2 x + 3$ | $2$ | $7$ | $14$ | 14T9 | $[2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 577 | Data not computed | ||||||
| 1571 | Data not computed | ||||||