Normalized defining polynomial
\( x^{21} - 3 x^{20} - 154 x^{19} + 702 x^{18} + 8067 x^{17} - 51069 x^{16} - 141881 x^{15} + 1481799 x^{14} - 392050 x^{13} - 17045238 x^{12} + 22982466 x^{11} + 93151164 x^{10} - 175933680 x^{9} - 268059978 x^{8} + 569575429 x^{7} + 436774783 x^{6} - 811949642 x^{5} - 393645138 x^{4} + 382188985 x^{3} + 57261767 x^{2} - 68881097 x + 9903431 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3824733046663878899659290908522222609035545322716565602304=2^{18}\cdot 7^{17}\cdot 13^{3}\cdot 305624493259^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $552.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13, 305624493259$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} - \frac{1}{7} a^{4} - \frac{1}{7} a^{3} - \frac{1}{7} a^{2} - \frac{1}{7} a - \frac{2}{7}$, $\frac{1}{7} a^{8} - \frac{2}{7} a^{6} - \frac{2}{7} a^{5} - \frac{2}{7} a^{4} - \frac{2}{7} a^{3} - \frac{2}{7} a^{2} - \frac{3}{7} a - \frac{2}{7}$, $\frac{1}{7} a^{9} + \frac{3}{7} a^{6} + \frac{3}{7} a^{5} + \frac{3}{7} a^{4} + \frac{3}{7} a^{3} + \frac{2}{7} a^{2} + \frac{3}{7} a + \frac{3}{7}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} - \frac{1}{7} a^{4} - \frac{2}{7} a^{3} - \frac{1}{7} a^{2} - \frac{1}{7} a - \frac{1}{7}$, $\frac{1}{7} a^{11} - \frac{2}{7} a^{6} - \frac{2}{7} a^{5} - \frac{3}{7} a^{4} - \frac{2}{7} a^{3} - \frac{2}{7} a^{2} - \frac{2}{7} a - \frac{2}{7}$, $\frac{1}{49} a^{12} - \frac{2}{49} a^{10} + \frac{3}{49} a^{9} + \frac{2}{49} a^{8} + \frac{3}{49} a^{7} - \frac{3}{7} a^{6} + \frac{13}{49} a^{5} - \frac{12}{49} a^{3} + \frac{18}{49} a^{2} + \frac{5}{49} a - \frac{10}{49}$, $\frac{1}{294} a^{13} - \frac{1}{294} a^{12} - \frac{3}{98} a^{11} + \frac{5}{294} a^{10} - \frac{1}{294} a^{9} + \frac{5}{98} a^{8} - \frac{1}{98} a^{7} - \frac{33}{98} a^{6} + \frac{33}{98} a^{5} + \frac{107}{294} a^{4} - \frac{103}{294} a^{3} + \frac{33}{98} a^{2} + \frac{83}{294} a + \frac{101}{294}$, $\frac{1}{294} a^{14} + \frac{1}{147} a^{12} - \frac{2}{147} a^{11} - \frac{10}{147} a^{10} + \frac{4}{147} a^{9} - \frac{1}{49} a^{8} + \frac{3}{49} a^{7} - \frac{2}{7} a^{6} - \frac{29}{147} a^{5} - \frac{61}{147} a^{4} + \frac{10}{147} a^{3} + \frac{10}{147} a^{2} - \frac{67}{147} a + \frac{65}{294}$, $\frac{1}{294} a^{15} - \frac{1}{147} a^{12} - \frac{1}{147} a^{11} - \frac{1}{147} a^{10} - \frac{2}{147} a^{9} - \frac{2}{49} a^{8} + \frac{1}{49} a^{7} + \frac{4}{21} a^{6} - \frac{55}{147} a^{5} + \frac{8}{147} a^{4} + \frac{71}{147} a^{3} - \frac{61}{147} a^{2} + \frac{109}{294} a - \frac{38}{147}$, $\frac{1}{294} a^{16} + \frac{1}{147} a^{12} - \frac{10}{147} a^{11} - \frac{1}{49} a^{10} + \frac{2}{147} a^{9} + \frac{1}{49} a^{8} - \frac{8}{147} a^{7} + \frac{2}{21} a^{6} - \frac{64}{147} a^{5} - \frac{32}{147} a^{4} + \frac{31}{147} a^{3} - \frac{5}{294} a^{2} + \frac{6}{49} a + \frac{50}{147}$, $\frac{1}{26754} a^{17} + \frac{1}{26754} a^{16} + \frac{1}{1029} a^{15} - \frac{5}{8918} a^{14} + \frac{2}{1911} a^{13} - \frac{4}{637} a^{12} - \frac{18}{637} a^{11} + \frac{671}{13377} a^{10} + \frac{135}{4459} a^{9} - \frac{2}{1029} a^{8} - \frac{58}{4459} a^{7} - \frac{108}{637} a^{6} - \frac{590}{1911} a^{5} - \frac{499}{1911} a^{4} + \frac{565}{8918} a^{3} - \frac{1675}{8918} a^{2} + \frac{6530}{13377} a + \frac{3061}{8918}$, $\frac{1}{26754} a^{18} + \frac{25}{26754} a^{16} - \frac{41}{26754} a^{15} + \frac{43}{26754} a^{14} - \frac{1}{1911} a^{13} - \frac{16}{1911} a^{12} + \frac{230}{13377} a^{11} - \frac{17}{637} a^{10} + \frac{99}{4459} a^{9} - \frac{148}{13377} a^{8} + \frac{121}{4459} a^{7} - \frac{188}{1911} a^{6} + \frac{19}{147} a^{5} + \frac{1741}{8918} a^{4} - \frac{103}{1911} a^{3} - \frac{3755}{26754} a^{2} - \frac{1717}{8918} a + \frac{3739}{26754}$, $\frac{1}{11932391016} a^{19} - \frac{204205}{11932391016} a^{18} + \frac{208571}{11932391016} a^{17} - \frac{13257427}{11932391016} a^{16} - \frac{5701901}{5966195508} a^{15} + \frac{3914941}{5966195508} a^{14} - \frac{490955}{568209096} a^{13} - \frac{20881541}{11932391016} a^{12} + \frac{168566407}{11932391016} a^{11} + \frac{90589585}{11932391016} a^{10} - \frac{65441759}{11932391016} a^{9} + \frac{102935113}{11932391016} a^{8} + \frac{436532053}{11932391016} a^{7} - \frac{205660859}{1704627288} a^{6} - \frac{2389882295}{5966195508} a^{5} + \frac{53227}{1565109} a^{4} + \frac{250332893}{1491548877} a^{3} - \frac{2491395253}{5966195508} a^{2} - \frac{4364726251}{11932391016} a + \frac{1133194535}{11932391016}$, $\frac{1}{40323182977578622327732134777383901504} a^{20} - \frac{175311528233701863122567813}{10080795744394655581933033694345975376} a^{19} + \frac{15410868194772255712003469988137}{960075785180443388755527018509140512} a^{18} + \frac{23187963253838056643872389402355}{3360265248131551860644344564781991792} a^{17} - \frac{13922433465539927998488738887713483}{13441060992526207442577378259127967168} a^{16} + \frac{177685817675698608092858425290121}{480037892590221694377763509254570256} a^{15} + \frac{208328766302786225355787901586217}{443111900852512333271781700850372544} a^{14} - \frac{3500528030282665826250024656164535}{10080795744394655581933033694345975376} a^{13} - \frac{521258980231513357766748418724323}{80970246942928960497454085898361248} a^{12} - \frac{477517474928074955539717779535460}{30002368286888855898610219328410641} a^{11} + \frac{232658028544212371008053183036360331}{6720530496263103721288689129563983584} a^{10} - \frac{730983396788463357091356519405295}{19146810530664113166064641394769184} a^{9} + \frac{34616871631178213800529713707278303}{960075785180443388755527018509140512} a^{8} - \frac{1377914514689547468038970793074716}{30002368286888855898610219328410641} a^{7} + \frac{18033808807637763575118289961180551237}{40323182977578622327732134777383901504} a^{6} - \frac{94610262865033243073418256528618679}{1550891652983793166451235952976303904} a^{5} + \frac{201134300733183572070849668810200223}{480037892590221694377763509254570256} a^{4} - \frac{919069870133207744125896981307390471}{2240176832087701240429563043187994528} a^{3} - \frac{841956440870549661826335330869864717}{3101783305967586332902471905952607808} a^{2} - \frac{13821116412198666587264614486577902}{30002368286888855898610219328410641} a - \frac{985807889584880796927980721991695215}{5760454711082660332533162111054843072}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 60294843557900000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8232 |
| The 55 conjugacy class representatives for t21n45 are not computed |
| Character table for t21n45 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{7}$ | $21$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | R | $21$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $21$ | $21$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.7.0.1 | $x^{7} - 10 x + 2$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 13.7.0.1 | $x^{7} - 10 x + 2$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 305624493259 | Data not computed | ||||||