Normalized defining polynomial
\( x^{21} - 8 x^{20} - 233 x^{19} + 2271 x^{18} + 14055 x^{17} - 161041 x^{16} - 485290 x^{15} + 5398226 x^{14} + 13931443 x^{13} - 95749463 x^{12} - 315559277 x^{11} + 718427602 x^{10} + 4151473307 x^{9} + 2527041973 x^{8} - 18494956965 x^{7} - 54137613220 x^{6} - 73425815916 x^{5} - 59163722754 x^{4} - 29842819052 x^{3} - 9275792049 x^{2} - 1629072398 x - 123950137 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3793483076351788784186108732872148040652017859086592000000=2^{14}\cdot 5^{6}\cdot 29^{4}\cdot 577^{9}\cdot 3271^{2}\cdot 525571^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $551.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 577, 3271, 525571$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{35} a^{18} + \frac{6}{35} a^{17} + \frac{2}{35} a^{16} + \frac{11}{35} a^{15} + \frac{2}{35} a^{14} - \frac{3}{7} a^{13} + \frac{13}{35} a^{12} + \frac{6}{35} a^{10} + \frac{4}{35} a^{9} + \frac{1}{7} a^{8} - \frac{13}{35} a^{7} + \frac{2}{5} a^{6} + \frac{16}{35} a^{5} + \frac{2}{7} a^{4} + \frac{2}{7} a^{3} + \frac{2}{7} a^{2} - \frac{4}{35} a + \frac{2}{35}$, $\frac{1}{35} a^{19} + \frac{1}{35} a^{17} - \frac{1}{35} a^{16} + \frac{6}{35} a^{15} + \frac{8}{35} a^{14} - \frac{2}{35} a^{13} - \frac{8}{35} a^{12} + \frac{6}{35} a^{11} + \frac{3}{35} a^{10} + \frac{16}{35} a^{9} - \frac{8}{35} a^{8} - \frac{13}{35} a^{7} + \frac{2}{35} a^{6} - \frac{16}{35} a^{5} - \frac{3}{7} a^{4} - \frac{3}{7} a^{3} + \frac{6}{35} a^{2} - \frac{9}{35} a - \frac{12}{35}$, $\frac{1}{10885715906907830446565781815519234950411582974930086545} a^{20} - \frac{28777922267358320537060885369781643828813647301395146}{10885715906907830446565781815519234950411582974930086545} a^{19} - \frac{77099282198092546200007253889476452419965729739311189}{10885715906907830446565781815519234950411582974930086545} a^{18} + \frac{3551531780872061840462969331984406450814426361862764823}{10885715906907830446565781815519234950411582974930086545} a^{17} - \frac{1829496869114661762086649907496675293236157968075104863}{10885715906907830446565781815519234950411582974930086545} a^{16} - \frac{5296246249723277861845436478197824842750445566558799208}{10885715906907830446565781815519234950411582974930086545} a^{15} - \frac{237354008939474567893848813379517991748586621746014502}{2177143181381566089313156363103846990082316594986017309} a^{14} + \frac{10501519812874228011384097972050341316953840783209314}{10885715906907830446565781815519234950411582974930086545} a^{13} + \frac{2506540360048389713158541133774955733974887752416026489}{10885715906907830446565781815519234950411582974930086545} a^{12} - \frac{5263369729584752280844411990956908133706825741943076203}{10885715906907830446565781815519234950411582974930086545} a^{11} + \frac{21560640468888501700197615610657407939897757410602251}{149119395985038773240627148157797739046734013355206665} a^{10} - \frac{7259589528519042127000067757967539592146229640057618}{149119395985038773240627148157797739046734013355206665} a^{9} + \frac{562935152406876585765119952828858155917656115701998132}{2177143181381566089313156363103846990082316594986017309} a^{8} - \frac{140898737970544438712416818408724659300322105735167560}{311020454483080869901879480443406712868902370712288187} a^{7} + \frac{1181160152880466374688723460530635751545054461623422797}{10885715906907830446565781815519234950411582974930086545} a^{6} + \frac{3786856056679697621022123461854199137867186988412699851}{10885715906907830446565781815519234950411582974930086545} a^{5} + \frac{848489576346585565661740158072134239994958781954184827}{2177143181381566089313156363103846990082316594986017309} a^{4} - \frac{5123945259254699995805125444876290770532977142992277529}{10885715906907830446565781815519234950411582974930086545} a^{3} - \frac{98763086328474724475480949879260604008561133801164590}{311020454483080869901879480443406712868902370712288187} a^{2} - \frac{4553388874334092218557042542513072155105514060118363688}{10885715906907830446565781815519234950411582974930086545} a + \frac{1114286860496211258108020872938600695370674600379792517}{10885715906907830446565781815519234950411582974930086545}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4524389495820000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1959552 |
| The 171 conjugacy class representatives for t21n122 are not computed |
| Character table for t21n122 is not computed |
Intermediate fields
| 7.7.192100033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.31 | $x^{14} + x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{5} + 2 x^{3} + 2 x^{2} + 1$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.6.4.2 | $x^{6} - 29 x^{3} + 2523$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 577 | Data not computed | ||||||
| 3271 | Data not computed | ||||||
| 525571 | Data not computed | ||||||