Normalized defining polynomial
\( x^{21} - 8 x^{20} - 220 x^{19} + 1884 x^{18} + 17660 x^{17} - 160612 x^{16} - 676136 x^{15} + 6150204 x^{14} + 16330229 x^{13} - 110645300 x^{12} - 335529492 x^{11} + 831687320 x^{10} + 4351522002 x^{9} + 2422126064 x^{8} - 19214679456 x^{7} - 56774917712 x^{6} - 80223794180 x^{5} - 68940926608 x^{4} - 37807761952 x^{3} - 12977116160 x^{2} - 2548044728 x - 218815936 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3774397644894044347142955656438221553789875050264299307008=2^{43}\cdot 61^{2}\cdot 157^{2}\cdot 163^{2}\cdot 809^{6}\cdot 1987^{2}\cdot 12613^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $551.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 157, 163, 809, 1987, 12613$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{10}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{14} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{14} - \frac{1}{8} a^{12} + \frac{1}{8} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{18} - \frac{1}{8} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{19} - \frac{1}{16} a^{17} - \frac{1}{16} a^{15} - \frac{1}{8} a^{14} - \frac{1}{16} a^{13} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{22659608679241730027603104958726533046380395659031664} a^{20} - \frac{591063788418750691989649940183008290515998340453559}{22659608679241730027603104958726533046380395659031664} a^{19} + \frac{438338965371494063735053918903267441351506140570281}{22659608679241730027603104958726533046380395659031664} a^{18} + \frac{541404268605413411919230634068812144451437767915031}{22659608679241730027603104958726533046380395659031664} a^{17} - \frac{995424573865076089573647519928237457796609017993741}{22659608679241730027603104958726533046380395659031664} a^{16} - \frac{1343023800819772748331749637002317028509693192556573}{22659608679241730027603104958726533046380395659031664} a^{15} + \frac{2104000418079148484853872372002610250007970061963443}{22659608679241730027603104958726533046380395659031664} a^{14} + \frac{1907145171369878260559952722559102070541740148032043}{22659608679241730027603104958726533046380395659031664} a^{13} - \frac{259889561725431592423386645761452928307014143923175}{2832451084905216253450388119840816630797549457378958} a^{12} + \frac{101032315037489595392874825923333056995471652620257}{5664902169810432506900776239681633261595098914757916} a^{11} - \frac{650721593881281689125140902403171921977801770879437}{2832451084905216253450388119840816630797549457378958} a^{10} + \frac{2700421126313544121336523375826765449217302027081209}{11329804339620865013801552479363266523190197829515832} a^{9} + \frac{718594178336355629307533063787851624157942890320733}{5664902169810432506900776239681633261595098914757916} a^{8} - \frac{159847902847964346035610967003521101795602480261548}{1416225542452608126725194059920408315398774728689479} a^{7} - \frac{1168695207751739127406155443443143598231131288864489}{5664902169810432506900776239681633261595098914757916} a^{6} - \frac{665040153509158838513923168381181955370752758244281}{5664902169810432506900776239681633261595098914757916} a^{5} + \frac{397259946121660933836142579220592010234879845746162}{1416225542452608126725194059920408315398774728689479} a^{4} + \frac{3732629431625309260198191493784593351315122028293}{2832451084905216253450388119840816630797549457378958} a^{3} - \frac{231522858661696732432974254928702246937035550596674}{1416225542452608126725194059920408315398774728689479} a^{2} - \frac{289724611991162350171108039223153645789860755599763}{2832451084905216253450388119840816630797549457378958} a + \frac{40232478359871885081952057285929237090605967568141}{1416225542452608126725194059920408315398774728689479}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 56616224379700000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5878656 |
| The 120 conjugacy class representatives for t21n136 are not computed |
| Character table for t21n136 is not computed |
Intermediate fields
| 7.7.670188544.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.6.10.2 | $x^{6} + 2 x^{5} + 2 x^{4} + 2 x^{2} + 2$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.12.30.379 | $x^{12} + 2 x^{10} + 4 x^{8} + 4 x^{7} - 2 x^{4} + 4 x^{2} + 2$ | $12$ | $1$ | $30$ | 12T137 | $[2, 8/3, 8/3, 3, 10/3, 10/3]_{3}^{2}$ | |
| 61 | Data not computed | ||||||
| $157$ | $\Q_{157}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 157.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 157.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 157.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 157.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 157.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 157.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 157.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 157.3.0.1 | $x^{3} - x + 15$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 157.3.2.3 | $x^{3} - 3925$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 163 | Data not computed | ||||||
| 809 | Data not computed | ||||||
| 1987 | Data not computed | ||||||
| 12613 | Data not computed | ||||||