Properties

Label 21.21.373...401.1
Degree $21$
Signature $[21, 0]$
Discriminant $3.739\times 10^{51}$
Root discriminant \(285.66\)
Ramified prime $379$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_{21}$ (as 21T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^21 - x^20 - 180*x^19 + 325*x^18 + 12681*x^17 - 28085*x^16 - 466147*x^15 + 1104481*x^14 + 9994129*x^13 - 23230778*x^12 - 131326631*x^11 + 274701966*x^10 + 1071723493*x^9 - 1796606075*x^8 - 5285574412*x^7 + 5900535983*x^6 + 14227077020*x^5 - 7395125885*x^4 - 15613111936*x^3 + 1522403319*x^2 + 2278571400*x - 206124161)
 
gp: K = bnfinit(y^21 - y^20 - 180*y^19 + 325*y^18 + 12681*y^17 - 28085*y^16 - 466147*y^15 + 1104481*y^14 + 9994129*y^13 - 23230778*y^12 - 131326631*y^11 + 274701966*y^10 + 1071723493*y^9 - 1796606075*y^8 - 5285574412*y^7 + 5900535983*y^6 + 14227077020*y^5 - 7395125885*y^4 - 15613111936*y^3 + 1522403319*y^2 + 2278571400*y - 206124161, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - x^20 - 180*x^19 + 325*x^18 + 12681*x^17 - 28085*x^16 - 466147*x^15 + 1104481*x^14 + 9994129*x^13 - 23230778*x^12 - 131326631*x^11 + 274701966*x^10 + 1071723493*x^9 - 1796606075*x^8 - 5285574412*x^7 + 5900535983*x^6 + 14227077020*x^5 - 7395125885*x^4 - 15613111936*x^3 + 1522403319*x^2 + 2278571400*x - 206124161);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - x^20 - 180*x^19 + 325*x^18 + 12681*x^17 - 28085*x^16 - 466147*x^15 + 1104481*x^14 + 9994129*x^13 - 23230778*x^12 - 131326631*x^11 + 274701966*x^10 + 1071723493*x^9 - 1796606075*x^8 - 5285574412*x^7 + 5900535983*x^6 + 14227077020*x^5 - 7395125885*x^4 - 15613111936*x^3 + 1522403319*x^2 + 2278571400*x - 206124161)
 

\( x^{21} - x^{20} - 180 x^{19} + 325 x^{18} + 12681 x^{17} - 28085 x^{16} - 466147 x^{15} + \cdots - 206124161 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $21$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[21, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(3739247391481032835088920564931572276509155285348401\) \(\medspace = 379^{20}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(285.66\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $379^{20/21}\approx 285.6583127137164$
Ramified primes:   \(379\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $21$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(379\)
Dirichlet character group:    $\lbrace$$\chi_{379}(1,·)$, $\chi_{379}(322,·)$, $\chi_{379}(195,·)$, $\chi_{379}(5,·)$, $\chi_{379}(327,·)$, $\chi_{379}(138,·)$, $\chi_{379}(311,·)$, $\chi_{379}(76,·)$, $\chi_{379}(86,·)$, $\chi_{379}(217,·)$, $\chi_{379}(216,·)$, $\chi_{379}(25,·)$, $\chi_{379}(91,·)$, $\chi_{379}(93,·)$, $\chi_{379}(94,·)$, $\chi_{379}(39,·)$, $\chi_{379}(51,·)$, $\chi_{379}(246,·)$, $\chi_{379}(119,·)$, $\chi_{379}(125,·)$, $\chi_{379}(255,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{12\!\cdots\!59}a^{20}-\frac{52\!\cdots\!73}{12\!\cdots\!59}a^{19}+\frac{13\!\cdots\!84}{12\!\cdots\!59}a^{18}+\frac{31\!\cdots\!23}{12\!\cdots\!59}a^{17}-\frac{27\!\cdots\!60}{12\!\cdots\!59}a^{16}-\frac{28\!\cdots\!63}{12\!\cdots\!59}a^{15}+\frac{10\!\cdots\!60}{12\!\cdots\!59}a^{14}+\frac{26\!\cdots\!58}{12\!\cdots\!59}a^{13}+\frac{44\!\cdots\!67}{12\!\cdots\!59}a^{12}-\frac{22\!\cdots\!70}{12\!\cdots\!59}a^{11}+\frac{58\!\cdots\!25}{12\!\cdots\!59}a^{10}-\frac{38\!\cdots\!97}{12\!\cdots\!59}a^{9}-\frac{33\!\cdots\!16}{12\!\cdots\!59}a^{8}-\frac{35\!\cdots\!94}{12\!\cdots\!59}a^{7}-\frac{27\!\cdots\!83}{12\!\cdots\!59}a^{6}-\frac{43\!\cdots\!78}{12\!\cdots\!59}a^{5}-\frac{22\!\cdots\!42}{12\!\cdots\!59}a^{4}+\frac{55\!\cdots\!14}{12\!\cdots\!59}a^{3}-\frac{11\!\cdots\!67}{12\!\cdots\!59}a^{2}+\frac{26\!\cdots\!75}{12\!\cdots\!59}a-\frac{76\!\cdots\!32}{12\!\cdots\!59}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $20$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{67\!\cdots\!21}{12\!\cdots\!59}a^{20}+\frac{42\!\cdots\!80}{12\!\cdots\!59}a^{19}-\frac{10\!\cdots\!52}{12\!\cdots\!59}a^{18}-\frac{59\!\cdots\!02}{12\!\cdots\!59}a^{17}+\frac{72\!\cdots\!57}{12\!\cdots\!59}a^{16}+\frac{35\!\cdots\!42}{12\!\cdots\!59}a^{15}-\frac{26\!\cdots\!76}{12\!\cdots\!59}a^{14}-\frac{11\!\cdots\!60}{12\!\cdots\!59}a^{13}+\frac{55\!\cdots\!85}{12\!\cdots\!59}a^{12}+\frac{21\!\cdots\!08}{12\!\cdots\!59}a^{11}-\frac{69\!\cdots\!53}{12\!\cdots\!59}a^{10}-\frac{24\!\cdots\!29}{12\!\cdots\!59}a^{9}+\frac{49\!\cdots\!87}{12\!\cdots\!59}a^{8}+\frac{15\!\cdots\!81}{12\!\cdots\!59}a^{7}-\frac{18\!\cdots\!40}{12\!\cdots\!59}a^{6}-\frac{52\!\cdots\!38}{12\!\cdots\!59}a^{5}+\frac{27\!\cdots\!10}{12\!\cdots\!59}a^{4}+\frac{63\!\cdots\!79}{12\!\cdots\!59}a^{3}-\frac{11\!\cdots\!54}{12\!\cdots\!59}a^{2}-\frac{69\!\cdots\!46}{12\!\cdots\!59}a+\frac{69\!\cdots\!46}{12\!\cdots\!59}$, $\frac{71\!\cdots\!83}{12\!\cdots\!59}a^{20}+\frac{21\!\cdots\!96}{12\!\cdots\!59}a^{19}-\frac{11\!\cdots\!82}{12\!\cdots\!59}a^{18}-\frac{24\!\cdots\!82}{12\!\cdots\!59}a^{17}+\frac{79\!\cdots\!16}{12\!\cdots\!59}a^{16}+\frac{11\!\cdots\!33}{12\!\cdots\!59}a^{15}-\frac{27\!\cdots\!23}{12\!\cdots\!59}a^{14}-\frac{31\!\cdots\!70}{12\!\cdots\!59}a^{13}+\frac{56\!\cdots\!82}{12\!\cdots\!59}a^{12}+\frac{53\!\cdots\!79}{12\!\cdots\!59}a^{11}-\frac{66\!\cdots\!86}{12\!\cdots\!59}a^{10}-\frac{59\!\cdots\!31}{12\!\cdots\!59}a^{9}+\frac{45\!\cdots\!42}{12\!\cdots\!59}a^{8}+\frac{41\!\cdots\!31}{12\!\cdots\!59}a^{7}-\frac{16\!\cdots\!08}{12\!\cdots\!59}a^{6}-\frac{15\!\cdots\!76}{12\!\cdots\!59}a^{5}+\frac{25\!\cdots\!99}{12\!\cdots\!59}a^{4}+\frac{22\!\cdots\!93}{12\!\cdots\!59}a^{3}-\frac{12\!\cdots\!98}{12\!\cdots\!59}a^{2}-\frac{71\!\cdots\!71}{12\!\cdots\!59}a+\frac{66\!\cdots\!17}{12\!\cdots\!59}$, $\frac{11\!\cdots\!50}{12\!\cdots\!59}a^{20}+\frac{37\!\cdots\!54}{12\!\cdots\!59}a^{19}-\frac{19\!\cdots\!89}{12\!\cdots\!59}a^{18}-\frac{44\!\cdots\!13}{12\!\cdots\!59}a^{17}+\frac{12\!\cdots\!42}{12\!\cdots\!59}a^{16}+\frac{21\!\cdots\!48}{12\!\cdots\!59}a^{15}-\frac{45\!\cdots\!79}{12\!\cdots\!59}a^{14}-\frac{59\!\cdots\!43}{12\!\cdots\!59}a^{13}+\frac{93\!\cdots\!43}{12\!\cdots\!59}a^{12}+\frac{10\!\cdots\!87}{12\!\cdots\!59}a^{11}-\frac{11\!\cdots\!56}{12\!\cdots\!59}a^{10}-\frac{10\!\cdots\!45}{12\!\cdots\!59}a^{9}+\frac{80\!\cdots\!99}{12\!\cdots\!59}a^{8}+\frac{71\!\cdots\!22}{12\!\cdots\!59}a^{7}-\frac{30\!\cdots\!80}{12\!\cdots\!59}a^{6}-\frac{24\!\cdots\!57}{12\!\cdots\!59}a^{5}+\frac{52\!\cdots\!34}{12\!\cdots\!59}a^{4}+\frac{33\!\cdots\!53}{12\!\cdots\!59}a^{3}-\frac{32\!\cdots\!95}{12\!\cdots\!59}a^{2}-\frac{79\!\cdots\!52}{12\!\cdots\!59}a+\frac{37\!\cdots\!70}{12\!\cdots\!59}$, $\frac{14\!\cdots\!37}{12\!\cdots\!59}a^{20}+\frac{11\!\cdots\!51}{12\!\cdots\!59}a^{19}-\frac{23\!\cdots\!52}{12\!\cdots\!59}a^{18}-\frac{17\!\cdots\!25}{12\!\cdots\!59}a^{17}+\frac{16\!\cdots\!18}{12\!\cdots\!59}a^{16}+\frac{10\!\cdots\!51}{12\!\cdots\!59}a^{15}-\frac{64\!\cdots\!00}{12\!\cdots\!59}a^{14}-\frac{34\!\cdots\!80}{12\!\cdots\!59}a^{13}+\frac{14\!\cdots\!00}{12\!\cdots\!59}a^{12}+\frac{65\!\cdots\!23}{12\!\cdots\!59}a^{11}-\frac{19\!\cdots\!40}{12\!\cdots\!59}a^{10}-\frac{72\!\cdots\!54}{12\!\cdots\!59}a^{9}+\frac{14\!\cdots\!60}{12\!\cdots\!59}a^{8}+\frac{45\!\cdots\!88}{12\!\cdots\!59}a^{7}-\frac{50\!\cdots\!49}{12\!\cdots\!59}a^{6}-\frac{14\!\cdots\!27}{12\!\cdots\!59}a^{5}+\frac{59\!\cdots\!78}{12\!\cdots\!59}a^{4}+\frac{18\!\cdots\!40}{12\!\cdots\!59}a^{3}+\frac{30\!\cdots\!18}{12\!\cdots\!59}a^{2}-\frac{34\!\cdots\!05}{12\!\cdots\!59}a+\frac{33\!\cdots\!22}{12\!\cdots\!59}$, $\frac{31\!\cdots\!89}{12\!\cdots\!59}a^{20}+\frac{12\!\cdots\!08}{12\!\cdots\!59}a^{19}-\frac{50\!\cdots\!89}{12\!\cdots\!59}a^{18}-\frac{15\!\cdots\!27}{12\!\cdots\!59}a^{17}+\frac{33\!\cdots\!83}{12\!\cdots\!59}a^{16}+\frac{80\!\cdots\!97}{12\!\cdots\!59}a^{15}-\frac{11\!\cdots\!52}{12\!\cdots\!59}a^{14}-\frac{23\!\cdots\!46}{12\!\cdots\!59}a^{13}+\frac{22\!\cdots\!18}{12\!\cdots\!59}a^{12}+\frac{43\!\cdots\!67}{12\!\cdots\!59}a^{11}-\frac{26\!\cdots\!99}{12\!\cdots\!59}a^{10}-\frac{49\!\cdots\!34}{12\!\cdots\!59}a^{9}+\frac{16\!\cdots\!38}{12\!\cdots\!59}a^{8}+\frac{33\!\cdots\!68}{12\!\cdots\!59}a^{7}-\frac{50\!\cdots\!75}{12\!\cdots\!59}a^{6}-\frac{11\!\cdots\!07}{12\!\cdots\!59}a^{5}+\frac{38\!\cdots\!82}{12\!\cdots\!59}a^{4}+\frac{14\!\cdots\!14}{12\!\cdots\!59}a^{3}+\frac{35\!\cdots\!71}{12\!\cdots\!59}a^{2}-\frac{19\!\cdots\!47}{12\!\cdots\!59}a-\frac{54\!\cdots\!58}{12\!\cdots\!59}$, $\frac{41\!\cdots\!90}{12\!\cdots\!59}a^{20}+\frac{38\!\cdots\!56}{12\!\cdots\!59}a^{19}-\frac{65\!\cdots\!61}{12\!\cdots\!59}a^{18}-\frac{57\!\cdots\!95}{12\!\cdots\!59}a^{17}+\frac{42\!\cdots\!85}{12\!\cdots\!59}a^{16}+\frac{35\!\cdots\!07}{12\!\cdots\!59}a^{15}-\frac{15\!\cdots\!85}{12\!\cdots\!59}a^{14}-\frac{11\!\cdots\!93}{12\!\cdots\!59}a^{13}+\frac{33\!\cdots\!05}{12\!\cdots\!59}a^{12}+\frac{22\!\cdots\!21}{12\!\cdots\!59}a^{11}-\frac{42\!\cdots\!04}{12\!\cdots\!59}a^{10}-\frac{24\!\cdots\!42}{12\!\cdots\!59}a^{9}+\frac{31\!\cdots\!37}{12\!\cdots\!59}a^{8}+\frac{16\!\cdots\!84}{12\!\cdots\!59}a^{7}-\frac{11\!\cdots\!81}{12\!\cdots\!59}a^{6}-\frac{53\!\cdots\!50}{12\!\cdots\!59}a^{5}+\frac{15\!\cdots\!21}{12\!\cdots\!59}a^{4}+\frac{66\!\cdots\!40}{12\!\cdots\!59}a^{3}-\frac{33\!\cdots\!90}{12\!\cdots\!59}a^{2}-\frac{10\!\cdots\!11}{12\!\cdots\!59}a+\frac{90\!\cdots\!93}{12\!\cdots\!59}$, $\frac{69\!\cdots\!23}{12\!\cdots\!59}a^{20}+\frac{10\!\cdots\!97}{12\!\cdots\!59}a^{19}-\frac{11\!\cdots\!41}{12\!\cdots\!59}a^{18}-\frac{70\!\cdots\!56}{12\!\cdots\!59}a^{17}+\frac{79\!\cdots\!50}{12\!\cdots\!59}a^{16}+\frac{48\!\cdots\!67}{12\!\cdots\!59}a^{15}-\frac{27\!\cdots\!31}{12\!\cdots\!59}a^{14}+\frac{57\!\cdots\!60}{12\!\cdots\!59}a^{13}+\frac{56\!\cdots\!79}{12\!\cdots\!59}a^{12}-\frac{16\!\cdots\!06}{12\!\cdots\!59}a^{11}-\frac{66\!\cdots\!28}{12\!\cdots\!59}a^{10}+\frac{16\!\cdots\!00}{12\!\cdots\!59}a^{9}+\frac{45\!\cdots\!64}{12\!\cdots\!59}a^{8}-\frac{68\!\cdots\!19}{12\!\cdots\!59}a^{7}-\frac{16\!\cdots\!17}{12\!\cdots\!59}a^{6}+\frac{10\!\cdots\!21}{12\!\cdots\!59}a^{5}+\frac{28\!\cdots\!39}{12\!\cdots\!59}a^{4}-\frac{31\!\cdots\!08}{12\!\cdots\!59}a^{3}-\frac{15\!\cdots\!53}{12\!\cdots\!59}a^{2}+\frac{60\!\cdots\!57}{12\!\cdots\!59}a-\frac{42\!\cdots\!23}{12\!\cdots\!59}$, $\frac{41\!\cdots\!71}{12\!\cdots\!59}a^{20}+\frac{15\!\cdots\!92}{12\!\cdots\!59}a^{19}+\frac{82\!\cdots\!40}{12\!\cdots\!59}a^{18}-\frac{26\!\cdots\!35}{12\!\cdots\!59}a^{17}+\frac{59\!\cdots\!68}{12\!\cdots\!59}a^{16}+\frac{17\!\cdots\!04}{12\!\cdots\!59}a^{15}-\frac{13\!\cdots\!20}{12\!\cdots\!59}a^{14}-\frac{61\!\cdots\!18}{12\!\cdots\!59}a^{13}+\frac{62\!\cdots\!81}{12\!\cdots\!59}a^{12}+\frac{12\!\cdots\!55}{12\!\cdots\!59}a^{11}-\frac{13\!\cdots\!45}{12\!\cdots\!59}a^{10}-\frac{13\!\cdots\!36}{12\!\cdots\!59}a^{9}+\frac{15\!\cdots\!60}{12\!\cdots\!59}a^{8}+\frac{89\!\cdots\!72}{12\!\cdots\!59}a^{7}-\frac{97\!\cdots\!19}{12\!\cdots\!59}a^{6}-\frac{30\!\cdots\!10}{12\!\cdots\!59}a^{5}+\frac{29\!\cdots\!01}{12\!\cdots\!59}a^{4}+\frac{46\!\cdots\!20}{12\!\cdots\!59}a^{3}-\frac{35\!\cdots\!04}{12\!\cdots\!59}a^{2}-\frac{18\!\cdots\!53}{12\!\cdots\!59}a+\frac{42\!\cdots\!07}{12\!\cdots\!59}$, $\frac{86\!\cdots\!75}{12\!\cdots\!59}a^{20}+\frac{28\!\cdots\!64}{12\!\cdots\!59}a^{19}-\frac{14\!\cdots\!02}{12\!\cdots\!59}a^{18}-\frac{33\!\cdots\!67}{12\!\cdots\!59}a^{17}+\frac{94\!\cdots\!49}{12\!\cdots\!59}a^{16}+\frac{16\!\cdots\!99}{12\!\cdots\!59}a^{15}-\frac{32\!\cdots\!61}{12\!\cdots\!59}a^{14}-\frac{45\!\cdots\!92}{12\!\cdots\!59}a^{13}+\frac{65\!\cdots\!37}{12\!\cdots\!59}a^{12}+\frac{80\!\cdots\!37}{12\!\cdots\!59}a^{11}-\frac{77\!\cdots\!82}{12\!\cdots\!59}a^{10}-\frac{90\!\cdots\!44}{12\!\cdots\!59}a^{9}+\frac{51\!\cdots\!56}{12\!\cdots\!59}a^{8}+\frac{62\!\cdots\!40}{12\!\cdots\!59}a^{7}-\frac{17\!\cdots\!82}{12\!\cdots\!59}a^{6}-\frac{22\!\cdots\!83}{12\!\cdots\!59}a^{5}+\frac{24\!\cdots\!02}{12\!\cdots\!59}a^{4}+\frac{28\!\cdots\!93}{12\!\cdots\!59}a^{3}-\frac{74\!\cdots\!34}{12\!\cdots\!59}a^{2}-\frac{45\!\cdots\!43}{12\!\cdots\!59}a+\frac{95\!\cdots\!55}{12\!\cdots\!59}$, $\frac{12\!\cdots\!03}{12\!\cdots\!59}a^{20}+\frac{75\!\cdots\!38}{12\!\cdots\!59}a^{19}-\frac{21\!\cdots\!23}{12\!\cdots\!59}a^{18}-\frac{10\!\cdots\!48}{12\!\cdots\!59}a^{17}+\frac{14\!\cdots\!05}{12\!\cdots\!59}a^{16}+\frac{60\!\cdots\!09}{12\!\cdots\!59}a^{15}-\frac{52\!\cdots\!40}{12\!\cdots\!59}a^{14}-\frac{18\!\cdots\!26}{12\!\cdots\!59}a^{13}+\frac{11\!\cdots\!87}{12\!\cdots\!59}a^{12}+\frac{33\!\cdots\!27}{12\!\cdots\!59}a^{11}-\frac{14\!\cdots\!63}{12\!\cdots\!59}a^{10}-\frac{36\!\cdots\!44}{12\!\cdots\!59}a^{9}+\frac{10\!\cdots\!10}{12\!\cdots\!59}a^{8}+\frac{23\!\cdots\!00}{12\!\cdots\!59}a^{7}-\frac{36\!\cdots\!26}{12\!\cdots\!59}a^{6}-\frac{76\!\cdots\!62}{12\!\cdots\!59}a^{5}+\frac{44\!\cdots\!61}{12\!\cdots\!59}a^{4}+\frac{94\!\cdots\!43}{12\!\cdots\!59}a^{3}-\frac{35\!\cdots\!60}{12\!\cdots\!59}a^{2}-\frac{13\!\cdots\!34}{12\!\cdots\!59}a+\frac{11\!\cdots\!19}{12\!\cdots\!59}$, $\frac{30\!\cdots\!68}{12\!\cdots\!59}a^{20}+\frac{98\!\cdots\!71}{12\!\cdots\!59}a^{19}-\frac{50\!\cdots\!28}{12\!\cdots\!59}a^{18}-\frac{11\!\cdots\!95}{12\!\cdots\!59}a^{17}+\frac{33\!\cdots\!60}{12\!\cdots\!59}a^{16}+\frac{55\!\cdots\!84}{12\!\cdots\!59}a^{15}-\frac{11\!\cdots\!86}{12\!\cdots\!59}a^{14}-\frac{15\!\cdots\!77}{12\!\cdots\!59}a^{13}+\frac{23\!\cdots\!08}{12\!\cdots\!59}a^{12}+\frac{26\!\cdots\!30}{12\!\cdots\!59}a^{11}-\frac{27\!\cdots\!55}{12\!\cdots\!59}a^{10}-\frac{29\!\cdots\!52}{12\!\cdots\!59}a^{9}+\frac{18\!\cdots\!59}{12\!\cdots\!59}a^{8}+\frac{20\!\cdots\!00}{12\!\cdots\!59}a^{7}-\frac{61\!\cdots\!32}{12\!\cdots\!59}a^{6}-\frac{71\!\cdots\!77}{12\!\cdots\!59}a^{5}+\frac{82\!\cdots\!20}{12\!\cdots\!59}a^{4}+\frac{91\!\cdots\!37}{12\!\cdots\!59}a^{3}-\frac{23\!\cdots\!09}{12\!\cdots\!59}a^{2}-\frac{13\!\cdots\!41}{12\!\cdots\!59}a+\frac{26\!\cdots\!12}{12\!\cdots\!59}$, $\frac{18\!\cdots\!67}{12\!\cdots\!59}a^{20}+\frac{13\!\cdots\!00}{12\!\cdots\!59}a^{19}-\frac{29\!\cdots\!82}{12\!\cdots\!59}a^{18}-\frac{19\!\cdots\!88}{12\!\cdots\!59}a^{17}+\frac{19\!\cdots\!85}{12\!\cdots\!59}a^{16}+\frac{11\!\cdots\!95}{12\!\cdots\!59}a^{15}-\frac{69\!\cdots\!25}{12\!\cdots\!59}a^{14}-\frac{38\!\cdots\!79}{12\!\cdots\!59}a^{13}+\frac{14\!\cdots\!25}{12\!\cdots\!59}a^{12}+\frac{72\!\cdots\!25}{12\!\cdots\!59}a^{11}-\frac{18\!\cdots\!14}{12\!\cdots\!59}a^{10}-\frac{81\!\cdots\!44}{12\!\cdots\!59}a^{9}+\frac{13\!\cdots\!71}{12\!\cdots\!59}a^{8}+\frac{52\!\cdots\!81}{12\!\cdots\!59}a^{7}-\frac{47\!\cdots\!83}{12\!\cdots\!59}a^{6}-\frac{17\!\cdots\!74}{12\!\cdots\!59}a^{5}+\frac{71\!\cdots\!84}{12\!\cdots\!59}a^{4}+\frac{20\!\cdots\!72}{12\!\cdots\!59}a^{3}-\frac{43\!\cdots\!98}{12\!\cdots\!59}a^{2}-\frac{38\!\cdots\!56}{12\!\cdots\!59}a+\frac{46\!\cdots\!48}{12\!\cdots\!59}$, $\frac{88\!\cdots\!69}{12\!\cdots\!59}a^{20}+\frac{30\!\cdots\!78}{12\!\cdots\!59}a^{19}-\frac{14\!\cdots\!46}{12\!\cdots\!59}a^{18}-\frac{35\!\cdots\!72}{12\!\cdots\!59}a^{17}+\frac{96\!\cdots\!65}{12\!\cdots\!59}a^{16}+\frac{17\!\cdots\!51}{12\!\cdots\!59}a^{15}-\frac{33\!\cdots\!06}{12\!\cdots\!59}a^{14}-\frac{50\!\cdots\!17}{12\!\cdots\!59}a^{13}+\frac{66\!\cdots\!22}{12\!\cdots\!59}a^{12}+\frac{90\!\cdots\!91}{12\!\cdots\!59}a^{11}-\frac{77\!\cdots\!79}{12\!\cdots\!59}a^{10}-\frac{10\!\cdots\!35}{12\!\cdots\!59}a^{9}+\frac{51\!\cdots\!04}{12\!\cdots\!59}a^{8}+\frac{69\!\cdots\!71}{12\!\cdots\!59}a^{7}-\frac{16\!\cdots\!83}{12\!\cdots\!59}a^{6}-\frac{24\!\cdots\!26}{12\!\cdots\!59}a^{5}+\frac{20\!\cdots\!35}{12\!\cdots\!59}a^{4}+\frac{31\!\cdots\!62}{12\!\cdots\!59}a^{3}-\frac{22\!\cdots\!50}{12\!\cdots\!59}a^{2}-\frac{43\!\cdots\!35}{12\!\cdots\!59}a+\frac{30\!\cdots\!27}{12\!\cdots\!59}$, $\frac{19\!\cdots\!55}{12\!\cdots\!59}a^{20}+\frac{12\!\cdots\!73}{12\!\cdots\!59}a^{19}-\frac{31\!\cdots\!49}{12\!\cdots\!59}a^{18}-\frac{17\!\cdots\!60}{12\!\cdots\!59}a^{17}+\frac{21\!\cdots\!26}{12\!\cdots\!59}a^{16}+\frac{10\!\cdots\!87}{12\!\cdots\!59}a^{15}-\frac{78\!\cdots\!19}{12\!\cdots\!59}a^{14}-\frac{32\!\cdots\!79}{12\!\cdots\!59}a^{13}+\frac{17\!\cdots\!63}{12\!\cdots\!59}a^{12}+\frac{59\!\cdots\!25}{12\!\cdots\!59}a^{11}-\frac{22\!\cdots\!89}{12\!\cdots\!59}a^{10}-\frac{64\!\cdots\!63}{12\!\cdots\!59}a^{9}+\frac{16\!\cdots\!46}{12\!\cdots\!59}a^{8}+\frac{40\!\cdots\!64}{12\!\cdots\!59}a^{7}-\frac{68\!\cdots\!45}{12\!\cdots\!59}a^{6}-\frac{13\!\cdots\!69}{12\!\cdots\!59}a^{5}+\frac{12\!\cdots\!93}{12\!\cdots\!59}a^{4}+\frac{16\!\cdots\!96}{12\!\cdots\!59}a^{3}-\frac{93\!\cdots\!16}{12\!\cdots\!59}a^{2}-\frac{26\!\cdots\!91}{12\!\cdots\!59}a+\frac{13\!\cdots\!04}{12\!\cdots\!59}$, $\frac{46\!\cdots\!41}{12\!\cdots\!59}a^{20}+\frac{17\!\cdots\!50}{12\!\cdots\!59}a^{19}-\frac{76\!\cdots\!47}{12\!\cdots\!59}a^{18}-\frac{21\!\cdots\!88}{12\!\cdots\!59}a^{17}+\frac{50\!\cdots\!71}{12\!\cdots\!59}a^{16}+\frac{11\!\cdots\!07}{12\!\cdots\!59}a^{15}-\frac{17\!\cdots\!53}{12\!\cdots\!59}a^{14}-\frac{32\!\cdots\!61}{12\!\cdots\!59}a^{13}+\frac{34\!\cdots\!71}{12\!\cdots\!59}a^{12}+\frac{59\!\cdots\!06}{12\!\cdots\!59}a^{11}-\frac{39\!\cdots\!68}{12\!\cdots\!59}a^{10}-\frac{67\!\cdots\!02}{12\!\cdots\!59}a^{9}+\frac{25\!\cdots\!96}{12\!\cdots\!59}a^{8}+\frac{45\!\cdots\!20}{12\!\cdots\!59}a^{7}-\frac{79\!\cdots\!47}{12\!\cdots\!59}a^{6}-\frac{15\!\cdots\!80}{12\!\cdots\!59}a^{5}+\frac{71\!\cdots\!38}{12\!\cdots\!59}a^{4}+\frac{20\!\cdots\!50}{12\!\cdots\!59}a^{3}+\frac{35\!\cdots\!57}{12\!\cdots\!59}a^{2}-\frac{26\!\cdots\!11}{12\!\cdots\!59}a-\frac{59\!\cdots\!08}{12\!\cdots\!59}$, $\frac{55\!\cdots\!07}{12\!\cdots\!59}a^{20}+\frac{18\!\cdots\!95}{12\!\cdots\!59}a^{19}-\frac{91\!\cdots\!52}{12\!\cdots\!59}a^{18}-\frac{22\!\cdots\!49}{12\!\cdots\!59}a^{17}+\frac{60\!\cdots\!10}{12\!\cdots\!59}a^{16}+\frac{11\!\cdots\!45}{12\!\cdots\!59}a^{15}-\frac{20\!\cdots\!97}{12\!\cdots\!59}a^{14}-\frac{31\!\cdots\!66}{12\!\cdots\!59}a^{13}+\frac{41\!\cdots\!00}{12\!\cdots\!59}a^{12}+\frac{55\!\cdots\!38}{12\!\cdots\!59}a^{11}-\frac{48\!\cdots\!69}{12\!\cdots\!59}a^{10}-\frac{62\!\cdots\!93}{12\!\cdots\!59}a^{9}+\frac{32\!\cdots\!69}{12\!\cdots\!59}a^{8}+\frac{42\!\cdots\!04}{12\!\cdots\!59}a^{7}-\frac{10\!\cdots\!15}{12\!\cdots\!59}a^{6}-\frac{15\!\cdots\!42}{12\!\cdots\!59}a^{5}+\frac{13\!\cdots\!15}{12\!\cdots\!59}a^{4}+\frac{19\!\cdots\!76}{12\!\cdots\!59}a^{3}-\frac{20\!\cdots\!23}{12\!\cdots\!59}a^{2}-\frac{28\!\cdots\!49}{12\!\cdots\!59}a+\frac{19\!\cdots\!66}{12\!\cdots\!59}$, $\frac{25\!\cdots\!30}{12\!\cdots\!59}a^{20}+\frac{90\!\cdots\!32}{12\!\cdots\!59}a^{19}-\frac{42\!\cdots\!28}{12\!\cdots\!59}a^{18}-\frac{10\!\cdots\!26}{12\!\cdots\!59}a^{17}+\frac{27\!\cdots\!18}{12\!\cdots\!59}a^{16}+\frac{55\!\cdots\!05}{12\!\cdots\!59}a^{15}-\frac{97\!\cdots\!99}{12\!\cdots\!59}a^{14}-\frac{15\!\cdots\!39}{12\!\cdots\!59}a^{13}+\frac{19\!\cdots\!12}{12\!\cdots\!59}a^{12}+\frac{28\!\cdots\!14}{12\!\cdots\!59}a^{11}-\frac{23\!\cdots\!67}{12\!\cdots\!59}a^{10}-\frac{31\!\cdots\!37}{12\!\cdots\!59}a^{9}+\frac{15\!\cdots\!07}{12\!\cdots\!59}a^{8}+\frac{21\!\cdots\!07}{12\!\cdots\!59}a^{7}-\frac{53\!\cdots\!65}{12\!\cdots\!59}a^{6}-\frac{73\!\cdots\!91}{12\!\cdots\!59}a^{5}+\frac{75\!\cdots\!22}{12\!\cdots\!59}a^{4}+\frac{90\!\cdots\!83}{12\!\cdots\!59}a^{3}-\frac{26\!\cdots\!58}{12\!\cdots\!59}a^{2}-\frac{50\!\cdots\!52}{12\!\cdots\!59}a+\frac{63\!\cdots\!12}{12\!\cdots\!59}$, $\frac{28\!\cdots\!06}{12\!\cdots\!59}a^{20}+\frac{78\!\cdots\!76}{12\!\cdots\!59}a^{19}-\frac{47\!\cdots\!56}{12\!\cdots\!59}a^{18}-\frac{83\!\cdots\!11}{12\!\cdots\!59}a^{17}+\frac{31\!\cdots\!66}{12\!\cdots\!59}a^{16}+\frac{36\!\cdots\!49}{12\!\cdots\!59}a^{15}-\frac{11\!\cdots\!03}{12\!\cdots\!59}a^{14}-\frac{91\!\cdots\!17}{12\!\cdots\!59}a^{13}+\frac{22\!\cdots\!83}{12\!\cdots\!59}a^{12}+\frac{14\!\cdots\!88}{12\!\cdots\!59}a^{11}-\frac{26\!\cdots\!94}{12\!\cdots\!59}a^{10}-\frac{16\!\cdots\!17}{12\!\cdots\!59}a^{9}+\frac{17\!\cdots\!64}{12\!\cdots\!59}a^{8}+\frac{11\!\cdots\!88}{12\!\cdots\!59}a^{7}-\frac{63\!\cdots\!32}{12\!\cdots\!59}a^{6}-\frac{45\!\cdots\!60}{12\!\cdots\!59}a^{5}+\frac{98\!\cdots\!04}{12\!\cdots\!59}a^{4}+\frac{66\!\cdots\!44}{12\!\cdots\!59}a^{3}-\frac{47\!\cdots\!36}{12\!\cdots\!59}a^{2}-\frac{19\!\cdots\!93}{12\!\cdots\!59}a+\frac{23\!\cdots\!20}{12\!\cdots\!59}$, $\frac{39\!\cdots\!16}{12\!\cdots\!59}a^{20}+\frac{13\!\cdots\!84}{12\!\cdots\!59}a^{19}-\frac{65\!\cdots\!58}{12\!\cdots\!59}a^{18}-\frac{16\!\cdots\!79}{12\!\cdots\!59}a^{17}+\frac{43\!\cdots\!97}{12\!\cdots\!59}a^{16}+\frac{82\!\cdots\!37}{12\!\cdots\!59}a^{15}-\frac{14\!\cdots\!78}{12\!\cdots\!59}a^{14}-\frac{23\!\cdots\!15}{12\!\cdots\!59}a^{13}+\frac{29\!\cdots\!80}{12\!\cdots\!59}a^{12}+\frac{41\!\cdots\!72}{12\!\cdots\!59}a^{11}-\frac{34\!\cdots\!18}{12\!\cdots\!59}a^{10}-\frac{47\!\cdots\!56}{12\!\cdots\!59}a^{9}+\frac{23\!\cdots\!26}{12\!\cdots\!59}a^{8}+\frac{31\!\cdots\!42}{12\!\cdots\!59}a^{7}-\frac{77\!\cdots\!98}{12\!\cdots\!59}a^{6}-\frac{11\!\cdots\!65}{12\!\cdots\!59}a^{5}+\frac{97\!\cdots\!32}{12\!\cdots\!59}a^{4}+\frac{14\!\cdots\!28}{12\!\cdots\!59}a^{3}-\frac{17\!\cdots\!45}{12\!\cdots\!59}a^{2}-\frac{22\!\cdots\!46}{12\!\cdots\!59}a+\frac{19\!\cdots\!93}{12\!\cdots\!59}$, $\frac{24\!\cdots\!24}{12\!\cdots\!59}a^{20}+\frac{67\!\cdots\!24}{12\!\cdots\!59}a^{19}-\frac{13\!\cdots\!21}{12\!\cdots\!59}a^{18}-\frac{10\!\cdots\!47}{12\!\cdots\!59}a^{17}-\frac{57\!\cdots\!51}{12\!\cdots\!59}a^{16}+\frac{61\!\cdots\!11}{12\!\cdots\!59}a^{15}+\frac{70\!\cdots\!51}{12\!\cdots\!59}a^{14}-\frac{19\!\cdots\!41}{12\!\cdots\!59}a^{13}-\frac{25\!\cdots\!24}{12\!\cdots\!59}a^{12}+\frac{33\!\cdots\!34}{12\!\cdots\!59}a^{11}+\frac{46\!\cdots\!82}{12\!\cdots\!59}a^{10}-\frac{32\!\cdots\!99}{12\!\cdots\!59}a^{9}-\frac{45\!\cdots\!61}{12\!\cdots\!59}a^{8}+\frac{15\!\cdots\!47}{12\!\cdots\!59}a^{7}+\frac{21\!\cdots\!95}{12\!\cdots\!59}a^{6}-\frac{32\!\cdots\!75}{12\!\cdots\!59}a^{5}-\frac{34\!\cdots\!53}{12\!\cdots\!59}a^{4}+\frac{24\!\cdots\!22}{12\!\cdots\!59}a^{3}+\frac{82\!\cdots\!94}{12\!\cdots\!59}a^{2}-\frac{55\!\cdots\!67}{12\!\cdots\!59}a+\frac{31\!\cdots\!42}{12\!\cdots\!59}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 6959071739608064000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{21}\cdot(2\pi)^{0}\cdot 6959071739608064000 \cdot 1}{2\cdot\sqrt{3739247391481032835088920564931572276509155285348401}}\cr\approx \mathstrut & 0.119332606622122 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^21 - x^20 - 180*x^19 + 325*x^18 + 12681*x^17 - 28085*x^16 - 466147*x^15 + 1104481*x^14 + 9994129*x^13 - 23230778*x^12 - 131326631*x^11 + 274701966*x^10 + 1071723493*x^9 - 1796606075*x^8 - 5285574412*x^7 + 5900535983*x^6 + 14227077020*x^5 - 7395125885*x^4 - 15613111936*x^3 + 1522403319*x^2 + 2278571400*x - 206124161)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^21 - x^20 - 180*x^19 + 325*x^18 + 12681*x^17 - 28085*x^16 - 466147*x^15 + 1104481*x^14 + 9994129*x^13 - 23230778*x^12 - 131326631*x^11 + 274701966*x^10 + 1071723493*x^9 - 1796606075*x^8 - 5285574412*x^7 + 5900535983*x^6 + 14227077020*x^5 - 7395125885*x^4 - 15613111936*x^3 + 1522403319*x^2 + 2278571400*x - 206124161, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^21 - x^20 - 180*x^19 + 325*x^18 + 12681*x^17 - 28085*x^16 - 466147*x^15 + 1104481*x^14 + 9994129*x^13 - 23230778*x^12 - 131326631*x^11 + 274701966*x^10 + 1071723493*x^9 - 1796606075*x^8 - 5285574412*x^7 + 5900535983*x^6 + 14227077020*x^5 - 7395125885*x^4 - 15613111936*x^3 + 1522403319*x^2 + 2278571400*x - 206124161);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - x^20 - 180*x^19 + 325*x^18 + 12681*x^17 - 28085*x^16 - 466147*x^15 + 1104481*x^14 + 9994129*x^13 - 23230778*x^12 - 131326631*x^11 + 274701966*x^10 + 1071723493*x^9 - 1796606075*x^8 - 5285574412*x^7 + 5900535983*x^6 + 14227077020*x^5 - 7395125885*x^4 - 15613111936*x^3 + 1522403319*x^2 + 2278571400*x - 206124161);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{21}$ (as 21T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 21
The 21 conjugacy class representatives for $C_{21}$
Character table for $C_{21}$

Intermediate fields

3.3.143641.1, 7.7.2963706958323721.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $21$ $21$ ${\href{/padicField/5.7.0.1}{7} }^{3}$ $21$ ${\href{/padicField/11.3.0.1}{3} }^{7}$ $21$ $21$ $21$ ${\href{/padicField/23.7.0.1}{7} }^{3}$ ${\href{/padicField/29.7.0.1}{7} }^{3}$ $21$ ${\href{/padicField/37.7.0.1}{7} }^{3}$ ${\href{/padicField/41.7.0.1}{7} }^{3}$ $21$ $21$ $21$ ${\href{/padicField/59.7.0.1}{7} }^{3}$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(379\) Copy content Toggle raw display Deg $21$$21$$1$$20$