Normalized defining polynomial
\( x^{21} - x^{20} - 180 x^{19} + 325 x^{18} + 12681 x^{17} - 28085 x^{16} - 466147 x^{15} + 1104481 x^{14} + 9994129 x^{13} - 23230778 x^{12} - 131326631 x^{11} + 274701966 x^{10} + 1071723493 x^{9} - 1796606075 x^{8} - 5285574412 x^{7} + 5900535983 x^{6} + 14227077020 x^{5} - 7395125885 x^{4} - 15613111936 x^{3} + 1522403319 x^{2} + 2278571400 x - 206124161 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3739247391481032835088920564931572276509155285348401=379^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $285.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $379$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(379\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{379}(1,·)$, $\chi_{379}(322,·)$, $\chi_{379}(195,·)$, $\chi_{379}(5,·)$, $\chi_{379}(327,·)$, $\chi_{379}(138,·)$, $\chi_{379}(311,·)$, $\chi_{379}(76,·)$, $\chi_{379}(86,·)$, $\chi_{379}(217,·)$, $\chi_{379}(216,·)$, $\chi_{379}(25,·)$, $\chi_{379}(91,·)$, $\chi_{379}(93,·)$, $\chi_{379}(94,·)$, $\chi_{379}(39,·)$, $\chi_{379}(51,·)$, $\chi_{379}(246,·)$, $\chi_{379}(119,·)$, $\chi_{379}(125,·)$, $\chi_{379}(255,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{1249839824223437945588631433613532396655462394489911292040531747393355782006345134859959} a^{20} - \frac{522120908793096745621686047758171968642451890795592948181730859633448903374789216987073}{1249839824223437945588631433613532396655462394489911292040531747393355782006345134859959} a^{19} + \frac{132125432055272501767435141066648326492159674919529682176511955103727086723870889797384}{1249839824223437945588631433613532396655462394489911292040531747393355782006345134859959} a^{18} + \frac{314917731910058259811504957913406408003978858860515160976849022256883485297220993284823}{1249839824223437945588631433613532396655462394489911292040531747393355782006345134859959} a^{17} - \frac{272238409816137217596788420880069284086718643275762385114144582984144856605065771125760}{1249839824223437945588631433613532396655462394489911292040531747393355782006345134859959} a^{16} - \frac{283698736525186532516400251800109279863703206111830353623102947144339202925607645741263}{1249839824223437945588631433613532396655462394489911292040531747393355782006345134859959} a^{15} + \frac{102108527735458074217712611144884820536947188503906304294953351494334376195445251346360}{1249839824223437945588631433613532396655462394489911292040531747393355782006345134859959} a^{14} + \frac{260471125768159213055858326494911193110155245103667638890355416591702977530499482380958}{1249839824223437945588631433613532396655462394489911292040531747393355782006345134859959} a^{13} + \frac{440263221923060777084954113188833121350182319992528388475929438571265542224007097227367}{1249839824223437945588631433613532396655462394489911292040531747393355782006345134859959} a^{12} - \frac{225422717563517825883183861392478526025353493516355387506639660334862204334960322645970}{1249839824223437945588631433613532396655462394489911292040531747393355782006345134859959} a^{11} + \frac{58308337900414418897883865979966086128209228393249310079528826921375556646859779880925}{1249839824223437945588631433613532396655462394489911292040531747393355782006345134859959} a^{10} - \frac{38295818737090774442696583798961614468132509297211347985128072320392922642698202026097}{1249839824223437945588631433613532396655462394489911292040531747393355782006345134859959} a^{9} - \frac{330736041480758721432243009467916423809870553059031513773950400264886344406187813337016}{1249839824223437945588631433613532396655462394489911292040531747393355782006345134859959} a^{8} - \frac{350004215698005723944306393961037895686613678170070043079136691721303775212190383152994}{1249839824223437945588631433613532396655462394489911292040531747393355782006345134859959} a^{7} - \frac{273262302024920482338922660945659581237164871860345407687463696683385913395033725246083}{1249839824223437945588631433613532396655462394489911292040531747393355782006345134859959} a^{6} - \frac{430782869354541774815750620511197907002103159195322982942010426854490821788804022118878}{1249839824223437945588631433613532396655462394489911292040531747393355782006345134859959} a^{5} - \frac{229257373424696737720095067739495896059808039378547117651709383813648933347884785138642}{1249839824223437945588631433613532396655462394489911292040531747393355782006345134859959} a^{4} + \frac{557142655734813690511282572246099775449831180745148227106107704645704746076569836827414}{1249839824223437945588631433613532396655462394489911292040531747393355782006345134859959} a^{3} - \frac{110778992177276233757233059392738110161872260523442021724797058679684914714782918548167}{1249839824223437945588631433613532396655462394489911292040531747393355782006345134859959} a^{2} + \frac{266442363655005274488491734344260789049564172546273585507765917361950545058391477877675}{1249839824223437945588631433613532396655462394489911292040531747393355782006345134859959} a - \frac{76612890913394085388791818039631861239657906792544230630916198275473848497771668480332}{1249839824223437945588631433613532396655462394489911292040531747393355782006345134859959}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6959071739608064000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| 3.3.143641.1, 7.7.2963706958323721.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 379 | Data not computed | ||||||