Properties

Label 21.21.373...121.2
Degree $21$
Signature $[21, 0]$
Discriminant $3.732\times 10^{50}$
Root discriminant \(255.97\)
Ramified primes $19,43$
Class number $3$ (GRH)
Class group [3] (GRH)
Galois group $C_{21}$ (as 21T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^21 - x^20 - 278*x^19 - 325*x^18 + 30572*x^17 + 90706*x^16 - 1619293*x^15 - 7441717*x^14 + 40623104*x^13 + 278806912*x^12 - 309578439*x^11 - 5095633178*x^10 - 5354762119*x^9 + 40289615751*x^8 + 110934247984*x^7 - 35893590814*x^6 - 526207863829*x^5 - 789731658124*x^4 - 300252270554*x^3 + 314047983523*x^2 + 333487382586*x + 88392158713)
 
gp: K = bnfinit(y^21 - y^20 - 278*y^19 - 325*y^18 + 30572*y^17 + 90706*y^16 - 1619293*y^15 - 7441717*y^14 + 40623104*y^13 + 278806912*y^12 - 309578439*y^11 - 5095633178*y^10 - 5354762119*y^9 + 40289615751*y^8 + 110934247984*y^7 - 35893590814*y^6 - 526207863829*y^5 - 789731658124*y^4 - 300252270554*y^3 + 314047983523*y^2 + 333487382586*y + 88392158713, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - x^20 - 278*x^19 - 325*x^18 + 30572*x^17 + 90706*x^16 - 1619293*x^15 - 7441717*x^14 + 40623104*x^13 + 278806912*x^12 - 309578439*x^11 - 5095633178*x^10 - 5354762119*x^9 + 40289615751*x^8 + 110934247984*x^7 - 35893590814*x^6 - 526207863829*x^5 - 789731658124*x^4 - 300252270554*x^3 + 314047983523*x^2 + 333487382586*x + 88392158713);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - x^20 - 278*x^19 - 325*x^18 + 30572*x^17 + 90706*x^16 - 1619293*x^15 - 7441717*x^14 + 40623104*x^13 + 278806912*x^12 - 309578439*x^11 - 5095633178*x^10 - 5354762119*x^9 + 40289615751*x^8 + 110934247984*x^7 - 35893590814*x^6 - 526207863829*x^5 - 789731658124*x^4 - 300252270554*x^3 + 314047983523*x^2 + 333487382586*x + 88392158713)
 

\( x^{21} - x^{20} - 278 x^{19} - 325 x^{18} + 30572 x^{17} + 90706 x^{16} - 1619293 x^{15} + \cdots + 88392158713 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $21$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[21, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(373181000690273382911499008901975594970451729658121\) \(\medspace = 19^{14}\cdot 43^{20}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(255.97\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $19^{2/3}43^{20/21}\approx 255.9685710799544$
Ramified primes:   \(19\), \(43\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $21$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(817=19\cdot 43\)
Dirichlet character group:    $\lbrace$$\chi_{817}(704,·)$, $\chi_{817}(1,·)$, $\chi_{817}(514,·)$, $\chi_{817}(68,·)$, $\chi_{817}(144,·)$, $\chi_{817}(742,·)$, $\chi_{817}(723,·)$, $\chi_{817}(666,·)$, $\chi_{817}(539,·)$, $\chi_{817}(353,·)$, $\chi_{817}(805,·)$, $\chi_{817}(486,·)$, $\chi_{817}(425,·)$, $\chi_{817}(619,·)$, $\chi_{817}(368,·)$, $\chi_{817}(305,·)$, $\chi_{817}(178,·)$, $\chi_{817}(83,·)$, $\chi_{817}(311,·)$, $\chi_{817}(315,·)$, $\chi_{817}(638,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{251}a^{18}+\frac{49}{251}a^{17}-\frac{41}{251}a^{16}-\frac{117}{251}a^{15}-\frac{60}{251}a^{14}+\frac{83}{251}a^{13}+\frac{77}{251}a^{12}+\frac{80}{251}a^{11}+\frac{102}{251}a^{10}-\frac{71}{251}a^{9}-\frac{103}{251}a^{8}-\frac{77}{251}a^{7}+\frac{8}{251}a^{6}+\frac{64}{251}a^{5}+\frac{116}{251}a^{4}+\frac{31}{251}a^{3}-\frac{43}{251}a^{2}-\frac{116}{251}a+\frac{8}{251}$, $\frac{1}{77057}a^{19}-\frac{116}{77057}a^{18}-\frac{345}{77057}a^{17}+\frac{8907}{77057}a^{16}-\frac{13636}{77057}a^{15}-\frac{38460}{77057}a^{14}+\frac{36582}{77057}a^{13}+\frac{5698}{77057}a^{12}-\frac{7827}{77057}a^{11}+\frac{418}{77057}a^{10}+\frac{33951}{77057}a^{9}-\frac{32529}{77057}a^{8}-\frac{33220}{77057}a^{7}+\frac{34888}{77057}a^{6}+\frac{8632}{77057}a^{5}-\frac{24129}{77057}a^{4}-\frac{7166}{77057}a^{3}+\frac{16768}{77057}a^{2}+\frac{11367}{77057}a-\frac{20396}{77057}$, $\frac{1}{41\!\cdots\!69}a^{20}+\frac{70\!\cdots\!19}{41\!\cdots\!69}a^{19}-\frac{48\!\cdots\!06}{41\!\cdots\!69}a^{18}+\frac{13\!\cdots\!82}{41\!\cdots\!69}a^{17}-\frac{13\!\cdots\!78}{41\!\cdots\!69}a^{16}-\frac{19\!\cdots\!33}{41\!\cdots\!69}a^{15}-\frac{48\!\cdots\!02}{41\!\cdots\!69}a^{14}-\frac{73\!\cdots\!11}{41\!\cdots\!69}a^{13}-\frac{18\!\cdots\!58}{41\!\cdots\!69}a^{12}+\frac{12\!\cdots\!30}{41\!\cdots\!69}a^{11}+\frac{82\!\cdots\!60}{41\!\cdots\!69}a^{10}-\frac{18\!\cdots\!39}{41\!\cdots\!69}a^{9}-\frac{10\!\cdots\!40}{41\!\cdots\!69}a^{8}-\frac{16\!\cdots\!06}{41\!\cdots\!69}a^{7}+\frac{12\!\cdots\!02}{41\!\cdots\!69}a^{6}+\frac{55\!\cdots\!95}{41\!\cdots\!69}a^{5}+\frac{43\!\cdots\!12}{41\!\cdots\!69}a^{4}+\frac{18\!\cdots\!35}{41\!\cdots\!69}a^{3}-\frac{11\!\cdots\!20}{41\!\cdots\!69}a^{2}-\frac{11\!\cdots\!43}{41\!\cdots\!69}a+\frac{54\!\cdots\!89}{41\!\cdots\!69}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $20$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{87\!\cdots\!28}{10\!\cdots\!51}a^{20}-\frac{28\!\cdots\!27}{10\!\cdots\!51}a^{19}-\frac{23\!\cdots\!44}{10\!\cdots\!51}a^{18}+\frac{26\!\cdots\!19}{10\!\cdots\!51}a^{17}+\frac{26\!\cdots\!52}{10\!\cdots\!51}a^{16}+\frac{18\!\cdots\!28}{10\!\cdots\!51}a^{15}-\frac{14\!\cdots\!66}{10\!\cdots\!51}a^{14}-\frac{31\!\cdots\!25}{10\!\cdots\!51}a^{13}+\frac{43\!\cdots\!78}{10\!\cdots\!51}a^{12}+\frac{14\!\cdots\!02}{10\!\cdots\!51}a^{11}-\frac{62\!\cdots\!27}{10\!\cdots\!51}a^{10}-\frac{30\!\cdots\!24}{10\!\cdots\!51}a^{9}+\frac{26\!\cdots\!90}{10\!\cdots\!51}a^{8}+\frac{30\!\cdots\!30}{10\!\cdots\!51}a^{7}+\frac{25\!\cdots\!90}{10\!\cdots\!51}a^{6}-\frac{10\!\cdots\!87}{10\!\cdots\!51}a^{5}-\frac{22\!\cdots\!94}{10\!\cdots\!51}a^{4}-\frac{12\!\cdots\!54}{10\!\cdots\!51}a^{3}+\frac{75\!\cdots\!02}{10\!\cdots\!51}a^{2}+\frac{99\!\cdots\!56}{10\!\cdots\!51}a+\frac{28\!\cdots\!30}{10\!\cdots\!51}$, $\frac{19\!\cdots\!60}{10\!\cdots\!51}a^{20}-\frac{65\!\cdots\!18}{10\!\cdots\!51}a^{19}-\frac{51\!\cdots\!50}{10\!\cdots\!51}a^{18}+\frac{64\!\cdots\!62}{10\!\cdots\!51}a^{17}+\frac{56\!\cdots\!48}{10\!\cdots\!51}a^{16}+\frac{32\!\cdots\!35}{10\!\cdots\!51}a^{15}-\frac{31\!\cdots\!45}{10\!\cdots\!51}a^{14}-\frac{63\!\cdots\!16}{10\!\cdots\!51}a^{13}+\frac{94\!\cdots\!52}{10\!\cdots\!51}a^{12}+\frac{30\!\cdots\!21}{10\!\cdots\!51}a^{11}-\frac{13\!\cdots\!64}{10\!\cdots\!51}a^{10}-\frac{64\!\cdots\!09}{10\!\cdots\!51}a^{9}+\frac{63\!\cdots\!54}{10\!\cdots\!51}a^{8}+\frac{63\!\cdots\!52}{10\!\cdots\!51}a^{7}+\frac{49\!\cdots\!96}{10\!\cdots\!51}a^{6}-\frac{21\!\cdots\!79}{10\!\cdots\!51}a^{5}-\frac{46\!\cdots\!21}{10\!\cdots\!51}a^{4}-\frac{24\!\cdots\!72}{10\!\cdots\!51}a^{3}+\frac{16\!\cdots\!49}{10\!\cdots\!51}a^{2}+\frac{20\!\cdots\!95}{10\!\cdots\!51}a+\frac{55\!\cdots\!85}{10\!\cdots\!51}$, $\frac{14\!\cdots\!34}{10\!\cdots\!51}a^{20}-\frac{44\!\cdots\!24}{10\!\cdots\!51}a^{19}-\frac{40\!\cdots\!65}{10\!\cdots\!51}a^{18}+\frac{31\!\cdots\!93}{10\!\cdots\!51}a^{17}+\frac{44\!\cdots\!73}{10\!\cdots\!51}a^{16}+\frac{46\!\cdots\!14}{10\!\cdots\!51}a^{15}-\frac{24\!\cdots\!61}{10\!\cdots\!51}a^{14}-\frac{61\!\cdots\!98}{10\!\cdots\!51}a^{13}+\frac{72\!\cdots\!75}{10\!\cdots\!51}a^{12}+\frac{27\!\cdots\!59}{10\!\cdots\!51}a^{11}-\frac{98\!\cdots\!54}{10\!\cdots\!51}a^{10}-\frac{56\!\cdots\!74}{10\!\cdots\!51}a^{9}+\frac{30\!\cdots\!73}{10\!\cdots\!51}a^{8}+\frac{53\!\cdots\!98}{10\!\cdots\!51}a^{7}+\frac{59\!\cdots\!73}{10\!\cdots\!51}a^{6}-\frac{16\!\cdots\!09}{10\!\cdots\!51}a^{5}-\frac{44\!\cdots\!72}{10\!\cdots\!51}a^{4}-\frac{29\!\cdots\!42}{10\!\cdots\!51}a^{3}+\frac{12\!\cdots\!80}{10\!\cdots\!51}a^{2}+\frac{21\!\cdots\!18}{10\!\cdots\!51}a+\frac{67\!\cdots\!21}{10\!\cdots\!51}$, $\frac{84\!\cdots\!51}{10\!\cdots\!51}a^{20}-\frac{21\!\cdots\!75}{10\!\cdots\!51}a^{19}-\frac{23\!\cdots\!15}{10\!\cdots\!51}a^{18}+\frac{72\!\cdots\!61}{10\!\cdots\!51}a^{17}+\frac{25\!\cdots\!09}{10\!\cdots\!51}a^{16}+\frac{38\!\cdots\!60}{10\!\cdots\!51}a^{15}-\frac{14\!\cdots\!17}{10\!\cdots\!51}a^{14}-\frac{41\!\cdots\!29}{10\!\cdots\!51}a^{13}+\frac{40\!\cdots\!96}{10\!\cdots\!51}a^{12}+\frac{17\!\cdots\!29}{10\!\cdots\!51}a^{11}-\frac{50\!\cdots\!12}{10\!\cdots\!51}a^{10}-\frac{35\!\cdots\!28}{10\!\cdots\!51}a^{9}+\frac{41\!\cdots\!86}{10\!\cdots\!51}a^{8}+\frac{32\!\cdots\!30}{10\!\cdots\!51}a^{7}+\frac{47\!\cdots\!81}{10\!\cdots\!51}a^{6}-\frac{90\!\cdots\!81}{10\!\cdots\!51}a^{5}-\frac{30\!\cdots\!89}{10\!\cdots\!51}a^{4}-\frac{25\!\cdots\!38}{10\!\cdots\!51}a^{3}+\frac{60\!\cdots\!54}{10\!\cdots\!51}a^{2}+\frac{17\!\cdots\!54}{10\!\cdots\!51}a+\frac{60\!\cdots\!48}{10\!\cdots\!51}$, $\frac{34\!\cdots\!95}{10\!\cdots\!51}a^{20}-\frac{95\!\cdots\!56}{10\!\cdots\!51}a^{19}-\frac{93\!\cdots\!45}{10\!\cdots\!51}a^{18}+\frac{55\!\cdots\!84}{10\!\cdots\!51}a^{17}+\frac{10\!\cdots\!40}{10\!\cdots\!51}a^{16}+\frac{12\!\cdots\!34}{10\!\cdots\!51}a^{15}-\frac{57\!\cdots\!18}{10\!\cdots\!51}a^{14}-\frac{15\!\cdots\!83}{10\!\cdots\!51}a^{13}+\frac{16\!\cdots\!16}{10\!\cdots\!51}a^{12}+\frac{66\!\cdots\!77}{10\!\cdots\!51}a^{11}-\frac{22\!\cdots\!25}{10\!\cdots\!51}a^{10}-\frac{13\!\cdots\!23}{10\!\cdots\!51}a^{9}+\frac{52\!\cdots\!93}{10\!\cdots\!51}a^{8}+\frac{12\!\cdots\!45}{10\!\cdots\!51}a^{7}+\frac{15\!\cdots\!43}{10\!\cdots\!51}a^{6}-\frac{38\!\cdots\!68}{10\!\cdots\!51}a^{5}-\frac{11\!\cdots\!99}{10\!\cdots\!51}a^{4}-\frac{78\!\cdots\!62}{10\!\cdots\!51}a^{3}+\frac{28\!\cdots\!68}{10\!\cdots\!51}a^{2}+\frac{56\!\cdots\!37}{10\!\cdots\!51}a+\frac{18\!\cdots\!03}{10\!\cdots\!51}$, $\frac{72\!\cdots\!19}{10\!\cdots\!51}a^{20}-\frac{20\!\cdots\!24}{10\!\cdots\!51}a^{19}-\frac{19\!\cdots\!24}{10\!\cdots\!51}a^{18}+\frac{11\!\cdots\!81}{10\!\cdots\!51}a^{17}+\frac{21\!\cdots\!67}{10\!\cdots\!51}a^{16}+\frac{26\!\cdots\!25}{10\!\cdots\!51}a^{15}-\frac{12\!\cdots\!61}{10\!\cdots\!51}a^{14}-\frac{31\!\cdots\!30}{10\!\cdots\!51}a^{13}+\frac{34\!\cdots\!18}{10\!\cdots\!51}a^{12}+\frac{13\!\cdots\!67}{10\!\cdots\!51}a^{11}-\frac{46\!\cdots\!31}{10\!\cdots\!51}a^{10}-\frac{28\!\cdots\!78}{10\!\cdots\!51}a^{9}+\frac{11\!\cdots\!87}{10\!\cdots\!51}a^{8}+\frac{26\!\cdots\!70}{10\!\cdots\!51}a^{7}+\frac{32\!\cdots\!02}{10\!\cdots\!51}a^{6}-\frac{81\!\cdots\!08}{10\!\cdots\!51}a^{5}-\frac{23\!\cdots\!01}{10\!\cdots\!51}a^{4}-\frac{16\!\cdots\!46}{10\!\cdots\!51}a^{3}+\frac{59\!\cdots\!76}{10\!\cdots\!51}a^{2}+\frac{11\!\cdots\!82}{10\!\cdots\!51}a+\frac{38\!\cdots\!23}{10\!\cdots\!51}$, $\frac{99\!\cdots\!70}{41\!\cdots\!69}a^{20}-\frac{21\!\cdots\!74}{41\!\cdots\!69}a^{19}-\frac{27\!\cdots\!73}{41\!\cdots\!69}a^{18}+\frac{34\!\cdots\!85}{41\!\cdots\!69}a^{17}+\frac{30\!\cdots\!16}{41\!\cdots\!69}a^{16}+\frac{54\!\cdots\!68}{41\!\cdots\!69}a^{15}-\frac{16\!\cdots\!07}{41\!\cdots\!69}a^{14}-\frac{54\!\cdots\!29}{41\!\cdots\!69}a^{13}+\frac{46\!\cdots\!36}{41\!\cdots\!69}a^{12}+\frac{22\!\cdots\!24}{41\!\cdots\!69}a^{11}-\frac{57\!\cdots\!11}{41\!\cdots\!69}a^{10}-\frac{43\!\cdots\!91}{41\!\cdots\!69}a^{9}-\frac{10\!\cdots\!99}{41\!\cdots\!69}a^{8}+\frac{40\!\cdots\!70}{41\!\cdots\!69}a^{7}+\frac{62\!\cdots\!09}{41\!\cdots\!69}a^{6}-\frac{11\!\cdots\!95}{41\!\cdots\!69}a^{5}-\frac{39\!\cdots\!24}{41\!\cdots\!69}a^{4}-\frac{32\!\cdots\!30}{41\!\cdots\!69}a^{3}+\frac{79\!\cdots\!44}{41\!\cdots\!69}a^{2}+\frac{21\!\cdots\!28}{41\!\cdots\!69}a+\frac{74\!\cdots\!94}{41\!\cdots\!69}$, $\frac{63\!\cdots\!82}{41\!\cdots\!69}a^{20}-\frac{14\!\cdots\!72}{41\!\cdots\!69}a^{19}-\frac{17\!\cdots\!32}{41\!\cdots\!69}a^{18}+\frac{29\!\cdots\!04}{41\!\cdots\!69}a^{17}+\frac{19\!\cdots\!50}{41\!\cdots\!69}a^{16}+\frac{31\!\cdots\!84}{41\!\cdots\!69}a^{15}-\frac{10\!\cdots\!44}{41\!\cdots\!69}a^{14}-\frac{32\!\cdots\!24}{41\!\cdots\!69}a^{13}+\frac{29\!\cdots\!28}{41\!\cdots\!69}a^{12}+\frac{13\!\cdots\!50}{41\!\cdots\!69}a^{11}-\frac{37\!\cdots\!91}{41\!\cdots\!69}a^{10}-\frac{26\!\cdots\!45}{41\!\cdots\!69}a^{9}+\frac{16\!\cdots\!07}{41\!\cdots\!69}a^{8}+\frac{24\!\cdots\!98}{41\!\cdots\!69}a^{7}+\frac{37\!\cdots\!88}{41\!\cdots\!69}a^{6}-\frac{69\!\cdots\!25}{41\!\cdots\!69}a^{5}-\frac{23\!\cdots\!79}{41\!\cdots\!69}a^{4}-\frac{19\!\cdots\!43}{41\!\cdots\!69}a^{3}+\frac{49\!\cdots\!82}{41\!\cdots\!69}a^{2}+\frac{13\!\cdots\!85}{41\!\cdots\!69}a+\frac{44\!\cdots\!64}{41\!\cdots\!69}$, $\frac{17\!\cdots\!76}{41\!\cdots\!69}a^{20}-\frac{35\!\cdots\!42}{41\!\cdots\!69}a^{19}-\frac{47\!\cdots\!32}{41\!\cdots\!69}a^{18}-\frac{58\!\cdots\!43}{41\!\cdots\!69}a^{17}+\frac{52\!\cdots\!82}{41\!\cdots\!69}a^{16}+\frac{99\!\cdots\!68}{41\!\cdots\!69}a^{15}-\frac{28\!\cdots\!96}{41\!\cdots\!69}a^{14}-\frac{96\!\cdots\!85}{41\!\cdots\!69}a^{13}+\frac{79\!\cdots\!48}{41\!\cdots\!69}a^{12}+\frac{39\!\cdots\!57}{41\!\cdots\!69}a^{11}-\frac{95\!\cdots\!06}{41\!\cdots\!69}a^{10}-\frac{77\!\cdots\!18}{41\!\cdots\!69}a^{9}-\frac{85\!\cdots\!87}{41\!\cdots\!69}a^{8}+\frac{70\!\cdots\!92}{41\!\cdots\!69}a^{7}+\frac{11\!\cdots\!64}{41\!\cdots\!69}a^{6}-\frac{18\!\cdots\!75}{41\!\cdots\!69}a^{5}-\frac{70\!\cdots\!92}{41\!\cdots\!69}a^{4}-\frac{58\!\cdots\!82}{41\!\cdots\!69}a^{3}+\frac{13\!\cdots\!19}{41\!\cdots\!69}a^{2}+\frac{39\!\cdots\!26}{41\!\cdots\!69}a+\frac{13\!\cdots\!23}{41\!\cdots\!69}$, $\frac{16\!\cdots\!32}{41\!\cdots\!69}a^{20}-\frac{39\!\cdots\!05}{41\!\cdots\!69}a^{19}-\frac{45\!\cdots\!24}{41\!\cdots\!69}a^{18}+\frac{87\!\cdots\!29}{41\!\cdots\!69}a^{17}+\frac{50\!\cdots\!09}{41\!\cdots\!69}a^{16}+\frac{81\!\cdots\!51}{41\!\cdots\!69}a^{15}-\frac{28\!\cdots\!86}{41\!\cdots\!69}a^{14}-\frac{85\!\cdots\!51}{41\!\cdots\!69}a^{13}+\frac{79\!\cdots\!39}{41\!\cdots\!69}a^{12}+\frac{35\!\cdots\!96}{41\!\cdots\!69}a^{11}-\frac{99\!\cdots\!63}{41\!\cdots\!69}a^{10}-\frac{71\!\cdots\!32}{41\!\cdots\!69}a^{9}+\frac{63\!\cdots\!67}{41\!\cdots\!69}a^{8}+\frac{65\!\cdots\!98}{41\!\cdots\!69}a^{7}+\frac{96\!\cdots\!81}{41\!\cdots\!69}a^{6}-\frac{18\!\cdots\!58}{41\!\cdots\!69}a^{5}-\frac{62\!\cdots\!81}{41\!\cdots\!69}a^{4}-\frac{49\!\cdots\!70}{41\!\cdots\!69}a^{3}+\frac{13\!\cdots\!96}{41\!\cdots\!69}a^{2}+\frac{33\!\cdots\!36}{41\!\cdots\!69}a+\frac{11\!\cdots\!50}{41\!\cdots\!69}$, $\frac{32\!\cdots\!42}{41\!\cdots\!69}a^{20}-\frac{10\!\cdots\!94}{41\!\cdots\!69}a^{19}-\frac{88\!\cdots\!40}{41\!\cdots\!69}a^{18}+\frac{80\!\cdots\!38}{41\!\cdots\!69}a^{17}+\frac{97\!\cdots\!85}{41\!\cdots\!69}a^{16}+\frac{88\!\cdots\!11}{41\!\cdots\!69}a^{15}-\frac{54\!\cdots\!65}{41\!\cdots\!69}a^{14}-\frac{12\!\cdots\!80}{41\!\cdots\!69}a^{13}+\frac{15\!\cdots\!39}{41\!\cdots\!69}a^{12}+\frac{56\!\cdots\!80}{41\!\cdots\!69}a^{11}-\frac{22\!\cdots\!66}{41\!\cdots\!69}a^{10}-\frac{11\!\cdots\!62}{41\!\cdots\!69}a^{9}+\frac{79\!\cdots\!53}{41\!\cdots\!69}a^{8}+\frac{11\!\cdots\!76}{41\!\cdots\!69}a^{7}+\frac{11\!\cdots\!56}{41\!\cdots\!69}a^{6}-\frac{36\!\cdots\!19}{41\!\cdots\!69}a^{5}-\frac{92\!\cdots\!76}{41\!\cdots\!69}a^{4}-\frac{57\!\cdots\!04}{41\!\cdots\!69}a^{3}+\frac{27\!\cdots\!14}{41\!\cdots\!69}a^{2}+\frac{43\!\cdots\!93}{41\!\cdots\!69}a+\frac{13\!\cdots\!31}{41\!\cdots\!69}$, $\frac{48\!\cdots\!80}{41\!\cdots\!69}a^{20}-\frac{14\!\cdots\!62}{41\!\cdots\!69}a^{19}-\frac{13\!\cdots\!42}{41\!\cdots\!69}a^{18}+\frac{10\!\cdots\!19}{41\!\cdots\!69}a^{17}+\frac{14\!\cdots\!16}{41\!\cdots\!69}a^{16}+\frac{14\!\cdots\!76}{41\!\cdots\!69}a^{15}-\frac{81\!\cdots\!11}{41\!\cdots\!69}a^{14}-\frac{19\!\cdots\!19}{41\!\cdots\!69}a^{13}+\frac{23\!\cdots\!54}{41\!\cdots\!69}a^{12}+\frac{87\!\cdots\!95}{41\!\cdots\!69}a^{11}-\frac{32\!\cdots\!25}{41\!\cdots\!69}a^{10}-\frac{18\!\cdots\!27}{41\!\cdots\!69}a^{9}+\frac{10\!\cdots\!79}{41\!\cdots\!69}a^{8}+\frac{17\!\cdots\!01}{41\!\cdots\!69}a^{7}+\frac{18\!\cdots\!08}{41\!\cdots\!69}a^{6}-\frac{55\!\cdots\!79}{41\!\cdots\!69}a^{5}-\frac{57\!\cdots\!35}{16\!\cdots\!19}a^{4}-\frac{92\!\cdots\!61}{41\!\cdots\!69}a^{3}+\frac{40\!\cdots\!03}{41\!\cdots\!69}a^{2}+\frac{69\!\cdots\!77}{41\!\cdots\!69}a+\frac{21\!\cdots\!35}{41\!\cdots\!69}$, $\frac{73\!\cdots\!90}{41\!\cdots\!69}a^{20}-\frac{22\!\cdots\!87}{41\!\cdots\!69}a^{19}-\frac{19\!\cdots\!79}{41\!\cdots\!69}a^{18}+\frac{16\!\cdots\!45}{41\!\cdots\!69}a^{17}+\frac{22\!\cdots\!35}{41\!\cdots\!69}a^{16}+\frac{22\!\cdots\!76}{41\!\cdots\!69}a^{15}-\frac{12\!\cdots\!50}{41\!\cdots\!69}a^{14}-\frac{29\!\cdots\!18}{41\!\cdots\!69}a^{13}+\frac{35\!\cdots\!78}{41\!\cdots\!69}a^{12}+\frac{13\!\cdots\!35}{41\!\cdots\!69}a^{11}-\frac{49\!\cdots\!20}{41\!\cdots\!69}a^{10}-\frac{27\!\cdots\!31}{41\!\cdots\!69}a^{9}+\frac{15\!\cdots\!26}{41\!\cdots\!69}a^{8}+\frac{26\!\cdots\!78}{41\!\cdots\!69}a^{7}+\frac{28\!\cdots\!59}{41\!\cdots\!69}a^{6}-\frac{83\!\cdots\!75}{41\!\cdots\!69}a^{5}-\frac{21\!\cdots\!89}{41\!\cdots\!69}a^{4}-\frac{13\!\cdots\!96}{41\!\cdots\!69}a^{3}+\frac{62\!\cdots\!08}{41\!\cdots\!69}a^{2}+\frac{10\!\cdots\!58}{41\!\cdots\!69}a+\frac{31\!\cdots\!02}{41\!\cdots\!69}$, $\frac{48\!\cdots\!30}{41\!\cdots\!69}a^{20}-\frac{36\!\cdots\!45}{13\!\cdots\!67}a^{19}-\frac{13\!\cdots\!29}{41\!\cdots\!69}a^{18}+\frac{16\!\cdots\!46}{41\!\cdots\!69}a^{17}+\frac{14\!\cdots\!77}{41\!\cdots\!69}a^{16}+\frac{24\!\cdots\!09}{41\!\cdots\!69}a^{15}-\frac{81\!\cdots\!55}{41\!\cdots\!69}a^{14}-\frac{25\!\cdots\!14}{41\!\cdots\!69}a^{13}+\frac{22\!\cdots\!82}{41\!\cdots\!69}a^{12}+\frac{10\!\cdots\!06}{41\!\cdots\!69}a^{11}-\frac{28\!\cdots\!54}{41\!\cdots\!69}a^{10}-\frac{20\!\cdots\!80}{41\!\cdots\!69}a^{9}+\frac{91\!\cdots\!75}{41\!\cdots\!69}a^{8}+\frac{19\!\cdots\!03}{41\!\cdots\!69}a^{7}+\frac{28\!\cdots\!99}{41\!\cdots\!69}a^{6}-\frac{53\!\cdots\!62}{41\!\cdots\!69}a^{5}-\frac{18\!\cdots\!53}{41\!\cdots\!69}a^{4}-\frac{14\!\cdots\!40}{41\!\cdots\!69}a^{3}+\frac{38\!\cdots\!70}{41\!\cdots\!69}a^{2}+\frac{10\!\cdots\!79}{41\!\cdots\!69}a+\frac{34\!\cdots\!98}{41\!\cdots\!69}$, $\frac{40\!\cdots\!94}{41\!\cdots\!69}a^{20}-\frac{12\!\cdots\!35}{41\!\cdots\!69}a^{19}-\frac{10\!\cdots\!79}{41\!\cdots\!69}a^{18}+\frac{96\!\cdots\!81}{41\!\cdots\!69}a^{17}+\frac{12\!\cdots\!17}{41\!\cdots\!69}a^{16}+\frac{11\!\cdots\!25}{41\!\cdots\!69}a^{15}-\frac{67\!\cdots\!49}{41\!\cdots\!69}a^{14}-\frac{16\!\cdots\!98}{41\!\cdots\!69}a^{13}+\frac{19\!\cdots\!58}{41\!\cdots\!69}a^{12}+\frac{71\!\cdots\!03}{41\!\cdots\!69}a^{11}-\frac{27\!\cdots\!58}{41\!\cdots\!69}a^{10}-\frac{14\!\cdots\!44}{41\!\cdots\!69}a^{9}+\frac{93\!\cdots\!46}{41\!\cdots\!69}a^{8}+\frac{14\!\cdots\!91}{41\!\cdots\!69}a^{7}+\frac{15\!\cdots\!67}{41\!\cdots\!69}a^{6}-\frac{45\!\cdots\!54}{41\!\cdots\!69}a^{5}-\frac{11\!\cdots\!89}{41\!\cdots\!69}a^{4}-\frac{74\!\cdots\!05}{41\!\cdots\!69}a^{3}+\frac{34\!\cdots\!92}{41\!\cdots\!69}a^{2}+\frac{56\!\cdots\!02}{41\!\cdots\!69}a+\frac{17\!\cdots\!83}{41\!\cdots\!69}$, $\frac{98\!\cdots\!79}{41\!\cdots\!69}a^{20}-\frac{20\!\cdots\!51}{41\!\cdots\!69}a^{19}-\frac{27\!\cdots\!99}{41\!\cdots\!69}a^{18}-\frac{23\!\cdots\!80}{41\!\cdots\!69}a^{17}+\frac{30\!\cdots\!17}{41\!\cdots\!69}a^{16}+\frac{56\!\cdots\!80}{41\!\cdots\!69}a^{15}-\frac{16\!\cdots\!43}{41\!\cdots\!69}a^{14}-\frac{55\!\cdots\!45}{41\!\cdots\!69}a^{13}+\frac{45\!\cdots\!16}{41\!\cdots\!69}a^{12}+\frac{22\!\cdots\!97}{41\!\cdots\!69}a^{11}-\frac{54\!\cdots\!54}{41\!\cdots\!69}a^{10}-\frac{44\!\cdots\!03}{41\!\cdots\!69}a^{9}-\frac{46\!\cdots\!45}{41\!\cdots\!69}a^{8}+\frac{40\!\cdots\!56}{41\!\cdots\!69}a^{7}+\frac{65\!\cdots\!96}{41\!\cdots\!69}a^{6}-\frac{10\!\cdots\!72}{41\!\cdots\!69}a^{5}-\frac{40\!\cdots\!28}{41\!\cdots\!69}a^{4}-\frac{34\!\cdots\!46}{41\!\cdots\!69}a^{3}+\frac{73\!\cdots\!82}{41\!\cdots\!69}a^{2}+\frac{22\!\cdots\!36}{41\!\cdots\!69}a+\frac{80\!\cdots\!36}{41\!\cdots\!69}$, $\frac{23\!\cdots\!00}{41\!\cdots\!69}a^{20}-\frac{81\!\cdots\!16}{41\!\cdots\!69}a^{19}-\frac{64\!\cdots\!63}{41\!\cdots\!69}a^{18}+\frac{77\!\cdots\!06}{41\!\cdots\!69}a^{17}+\frac{71\!\cdots\!17}{41\!\cdots\!69}a^{16}+\frac{43\!\cdots\!79}{41\!\cdots\!69}a^{15}-\frac{40\!\cdots\!78}{41\!\cdots\!69}a^{14}-\frac{81\!\cdots\!67}{41\!\cdots\!69}a^{13}+\frac{11\!\cdots\!59}{41\!\cdots\!69}a^{12}+\frac{38\!\cdots\!33}{41\!\cdots\!69}a^{11}-\frac{17\!\cdots\!23}{41\!\cdots\!69}a^{10}-\frac{81\!\cdots\!69}{41\!\cdots\!69}a^{9}+\frac{80\!\cdots\!28}{41\!\cdots\!69}a^{8}+\frac{81\!\cdots\!92}{41\!\cdots\!69}a^{7}+\frac{62\!\cdots\!72}{41\!\cdots\!69}a^{6}-\frac{28\!\cdots\!16}{41\!\cdots\!69}a^{5}-\frac{59\!\cdots\!78}{41\!\cdots\!69}a^{4}-\frac{26\!\cdots\!87}{41\!\cdots\!69}a^{3}+\frac{23\!\cdots\!17}{41\!\cdots\!69}a^{2}+\frac{23\!\cdots\!75}{41\!\cdots\!69}a+\frac{48\!\cdots\!55}{41\!\cdots\!69}$, $\frac{14\!\cdots\!23}{41\!\cdots\!69}a^{20}-\frac{42\!\cdots\!08}{41\!\cdots\!69}a^{19}-\frac{38\!\cdots\!95}{41\!\cdots\!69}a^{18}+\frac{31\!\cdots\!00}{41\!\cdots\!69}a^{17}+\frac{42\!\cdots\!49}{41\!\cdots\!69}a^{16}+\frac{42\!\cdots\!74}{41\!\cdots\!69}a^{15}-\frac{23\!\cdots\!20}{41\!\cdots\!69}a^{14}-\frac{57\!\cdots\!98}{41\!\cdots\!69}a^{13}+\frac{68\!\cdots\!12}{41\!\cdots\!69}a^{12}+\frac{25\!\cdots\!58}{41\!\cdots\!69}a^{11}-\frac{94\!\cdots\!63}{41\!\cdots\!69}a^{10}-\frac{52\!\cdots\!94}{41\!\cdots\!69}a^{9}+\frac{30\!\cdots\!11}{41\!\cdots\!69}a^{8}+\frac{50\!\cdots\!50}{41\!\cdots\!69}a^{7}+\frac{54\!\cdots\!25}{41\!\cdots\!69}a^{6}-\frac{15\!\cdots\!66}{41\!\cdots\!69}a^{5}-\frac{41\!\cdots\!68}{41\!\cdots\!69}a^{4}-\frac{27\!\cdots\!82}{41\!\cdots\!69}a^{3}+\frac{11\!\cdots\!83}{41\!\cdots\!69}a^{2}+\frac{20\!\cdots\!84}{41\!\cdots\!69}a+\frac{62\!\cdots\!92}{41\!\cdots\!69}$, $\frac{31\!\cdots\!91}{41\!\cdots\!69}a^{20}-\frac{11\!\cdots\!04}{41\!\cdots\!69}a^{19}-\frac{85\!\cdots\!10}{41\!\cdots\!69}a^{18}+\frac{11\!\cdots\!98}{41\!\cdots\!69}a^{17}+\frac{94\!\cdots\!08}{41\!\cdots\!69}a^{16}+\frac{49\!\cdots\!18}{41\!\cdots\!69}a^{15}-\frac{53\!\cdots\!83}{41\!\cdots\!69}a^{14}-\frac{10\!\cdots\!81}{41\!\cdots\!69}a^{13}+\frac{15\!\cdots\!84}{41\!\cdots\!69}a^{12}+\frac{49\!\cdots\!41}{41\!\cdots\!69}a^{11}-\frac{23\!\cdots\!17}{41\!\cdots\!69}a^{10}-\frac{10\!\cdots\!82}{41\!\cdots\!69}a^{9}+\frac{11\!\cdots\!15}{41\!\cdots\!69}a^{8}+\frac{10\!\cdots\!66}{41\!\cdots\!69}a^{7}+\frac{73\!\cdots\!12}{41\!\cdots\!69}a^{6}-\frac{37\!\cdots\!10}{41\!\cdots\!69}a^{5}-\frac{75\!\cdots\!19}{41\!\cdots\!69}a^{4}-\frac{32\!\cdots\!65}{41\!\cdots\!69}a^{3}+\frac{29\!\cdots\!91}{41\!\cdots\!69}a^{2}+\frac{29\!\cdots\!18}{41\!\cdots\!69}a+\frac{69\!\cdots\!47}{41\!\cdots\!69}$, $\frac{10\!\cdots\!86}{41\!\cdots\!69}a^{20}-\frac{21\!\cdots\!06}{41\!\cdots\!69}a^{19}-\frac{29\!\cdots\!76}{41\!\cdots\!69}a^{18}-\frac{36\!\cdots\!93}{41\!\cdots\!69}a^{17}+\frac{32\!\cdots\!34}{41\!\cdots\!69}a^{16}+\frac{62\!\cdots\!86}{41\!\cdots\!69}a^{15}-\frac{18\!\cdots\!61}{41\!\cdots\!69}a^{14}-\frac{60\!\cdots\!13}{41\!\cdots\!69}a^{13}+\frac{50\!\cdots\!11}{41\!\cdots\!69}a^{12}+\frac{24\!\cdots\!39}{41\!\cdots\!69}a^{11}-\frac{59\!\cdots\!27}{41\!\cdots\!69}a^{10}-\frac{48\!\cdots\!51}{41\!\cdots\!69}a^{9}-\frac{53\!\cdots\!40}{41\!\cdots\!69}a^{8}+\frac{44\!\cdots\!75}{41\!\cdots\!69}a^{7}+\frac{71\!\cdots\!86}{41\!\cdots\!69}a^{6}-\frac{11\!\cdots\!67}{41\!\cdots\!69}a^{5}-\frac{44\!\cdots\!99}{41\!\cdots\!69}a^{4}-\frac{37\!\cdots\!44}{41\!\cdots\!69}a^{3}+\frac{80\!\cdots\!08}{41\!\cdots\!69}a^{2}+\frac{25\!\cdots\!32}{41\!\cdots\!69}a+\frac{88\!\cdots\!08}{41\!\cdots\!69}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 725348753199178600 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{21}\cdot(2\pi)^{0}\cdot 725348753199178600 \cdot 3}{2\cdot\sqrt{373181000690273382911499008901975594970451729658121}}\cr\approx \mathstrut & 0.118115875778889 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^21 - x^20 - 278*x^19 - 325*x^18 + 30572*x^17 + 90706*x^16 - 1619293*x^15 - 7441717*x^14 + 40623104*x^13 + 278806912*x^12 - 309578439*x^11 - 5095633178*x^10 - 5354762119*x^9 + 40289615751*x^8 + 110934247984*x^7 - 35893590814*x^6 - 526207863829*x^5 - 789731658124*x^4 - 300252270554*x^3 + 314047983523*x^2 + 333487382586*x + 88392158713)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^21 - x^20 - 278*x^19 - 325*x^18 + 30572*x^17 + 90706*x^16 - 1619293*x^15 - 7441717*x^14 + 40623104*x^13 + 278806912*x^12 - 309578439*x^11 - 5095633178*x^10 - 5354762119*x^9 + 40289615751*x^8 + 110934247984*x^7 - 35893590814*x^6 - 526207863829*x^5 - 789731658124*x^4 - 300252270554*x^3 + 314047983523*x^2 + 333487382586*x + 88392158713, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^21 - x^20 - 278*x^19 - 325*x^18 + 30572*x^17 + 90706*x^16 - 1619293*x^15 - 7441717*x^14 + 40623104*x^13 + 278806912*x^12 - 309578439*x^11 - 5095633178*x^10 - 5354762119*x^9 + 40289615751*x^8 + 110934247984*x^7 - 35893590814*x^6 - 526207863829*x^5 - 789731658124*x^4 - 300252270554*x^3 + 314047983523*x^2 + 333487382586*x + 88392158713);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - x^20 - 278*x^19 - 325*x^18 + 30572*x^17 + 90706*x^16 - 1619293*x^15 - 7441717*x^14 + 40623104*x^13 + 278806912*x^12 - 309578439*x^11 - 5095633178*x^10 - 5354762119*x^9 + 40289615751*x^8 + 110934247984*x^7 - 35893590814*x^6 - 526207863829*x^5 - 789731658124*x^4 - 300252270554*x^3 + 314047983523*x^2 + 333487382586*x + 88392158713);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{21}$ (as 21T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 21
The 21 conjugacy class representatives for $C_{21}$
Character table for $C_{21}$

Intermediate fields

3.3.667489.1, 7.7.6321363049.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $21$ ${\href{/padicField/3.7.0.1}{7} }^{3}$ ${\href{/padicField/5.7.0.1}{7} }^{3}$ ${\href{/padicField/7.3.0.1}{3} }^{7}$ ${\href{/padicField/11.7.0.1}{7} }^{3}$ ${\href{/padicField/13.7.0.1}{7} }^{3}$ $21$ R $21$ ${\href{/padicField/29.7.0.1}{7} }^{3}$ $21$ ${\href{/padicField/37.3.0.1}{3} }^{7}$ $21$ R $21$ $21$ $21$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(19\) Copy content Toggle raw display 19.21.14.2$x^{21} - 82308 x^{12} + 1693651716 x^{3} + 258328932571$$3$$7$$14$$C_{21}$$[\ ]_{3}^{7}$
\(43\) Copy content Toggle raw display 43.21.20.8$x^{21} + 301$$21$$1$$20$$C_{21}$$[\ ]_{21}$