Properties

Label 21.21.3731810006...8121.1
Degree $21$
Signature $[21, 0]$
Discriminant $19^{14}\cdot 43^{20}$
Root discriminant $255.97$
Ramified primes $19, 43$
Class number $3$ (GRH)
Class group $[3]$ (GRH)
Galois group $C_{21}$ (as 21T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-14284976423, -116080052977, -10861258704, 294993180914, 55980136111, -218112157253, -74040616576, 60233241889, 30914338952, -4412589549, -4607226493, -273602661, 274015207, 39793032, -7475214, -1619293, 90706, 30572, -325, -278, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^21 - x^20 - 278*x^19 - 325*x^18 + 30572*x^17 + 90706*x^16 - 1619293*x^15 - 7475214*x^14 + 39793032*x^13 + 274015207*x^12 - 273602661*x^11 - 4607226493*x^10 - 4412589549*x^9 + 30914338952*x^8 + 60233241889*x^7 - 74040616576*x^6 - 218112157253*x^5 + 55980136111*x^4 + 294993180914*x^3 - 10861258704*x^2 - 116080052977*x - 14284976423)
 
gp: K = bnfinit(x^21 - x^20 - 278*x^19 - 325*x^18 + 30572*x^17 + 90706*x^16 - 1619293*x^15 - 7475214*x^14 + 39793032*x^13 + 274015207*x^12 - 273602661*x^11 - 4607226493*x^10 - 4412589549*x^9 + 30914338952*x^8 + 60233241889*x^7 - 74040616576*x^6 - 218112157253*x^5 + 55980136111*x^4 + 294993180914*x^3 - 10861258704*x^2 - 116080052977*x - 14284976423, 1)
 

Normalized defining polynomial

\( x^{21} - x^{20} - 278 x^{19} - 325 x^{18} + 30572 x^{17} + 90706 x^{16} - 1619293 x^{15} - 7475214 x^{14} + 39793032 x^{13} + 274015207 x^{12} - 273602661 x^{11} - 4607226493 x^{10} - 4412589549 x^{9} + 30914338952 x^{8} + 60233241889 x^{7} - 74040616576 x^{6} - 218112157253 x^{5} + 55980136111 x^{4} + 294993180914 x^{3} - 10861258704 x^{2} - 116080052977 x - 14284976423 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $21$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[21, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(373181000690273382911499008901975594970451729658121=19^{14}\cdot 43^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $255.97$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $19, 43$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(817=19\cdot 43\)
Dirichlet character group:    $\lbrace$$\chi_{817}(704,·)$, $\chi_{817}(1,·)$, $\chi_{817}(514,·)$, $\chi_{817}(771,·)$, $\chi_{817}(197,·)$, $\chi_{817}(273,·)$, $\chi_{817}(723,·)$, $\chi_{817}(666,·)$, $\chi_{817}(410,·)$, $\chi_{817}(482,·)$, $\chi_{817}(676,·)$, $\chi_{817}(742,·)$, $\chi_{817}(305,·)$, $\chi_{817}(296,·)$, $\chi_{817}(615,·)$, $\chi_{817}(748,·)$, $\chi_{817}(239,·)$, $\chi_{817}(49,·)$, $\chi_{817}(182,·)$, $\chi_{817}(444,·)$, $\chi_{817}(767,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{79} a^{19} - \frac{20}{79} a^{18} - \frac{23}{79} a^{17} + \frac{5}{79} a^{16} + \frac{14}{79} a^{15} - \frac{8}{79} a^{14} + \frac{31}{79} a^{13} + \frac{19}{79} a^{12} - \frac{28}{79} a^{11} - \frac{32}{79} a^{10} + \frac{14}{79} a^{9} - \frac{34}{79} a^{8} + \frac{9}{79} a^{7} - \frac{11}{79} a^{6} + \frac{21}{79} a^{5} - \frac{22}{79} a^{4} + \frac{9}{79} a^{3} - \frac{39}{79} a^{2} - \frac{17}{79} a + \frac{32}{79}$, $\frac{1}{1153795010937951052187554670463543300547700065999769628837805912139866159159549295326414663326523269893} a^{20} - \frac{884303246215051719602736258504015536797150169308012549655500060884510383669853530493256837758661022}{1153795010937951052187554670463543300547700065999769628837805912139866159159549295326414663326523269893} a^{19} + \frac{556685765854728699758103594234636586529632634905756168093105403638501715706339286338079475463360064339}{1153795010937951052187554670463543300547700065999769628837805912139866159159549295326414663326523269893} a^{18} + \frac{113254824982439162072150318772628150320951975454402064683107742720581507451063150657236747277458041008}{1153795010937951052187554670463543300547700065999769628837805912139866159159549295326414663326523269893} a^{17} - \frac{441916278457719216092782850489345113843223931240930566765114843840297933983267369650783315682043269733}{1153795010937951052187554670463543300547700065999769628837805912139866159159549295326414663326523269893} a^{16} - \frac{54395272480930252707531524225277309442207612150733833965572669415585261979383798697765588170142561386}{1153795010937951052187554670463543300547700065999769628837805912139866159159549295326414663326523269893} a^{15} - \frac{79892562153798669781160377798098018961921903733307908727140997827580650396527288079262327793439723842}{1153795010937951052187554670463543300547700065999769628837805912139866159159549295326414663326523269893} a^{14} + \frac{66305731478098534253052429037477106732626076298304772237054187975963030763470678007346268200362353505}{1153795010937951052187554670463543300547700065999769628837805912139866159159549295326414663326523269893} a^{13} + \frac{571058293752862838669068710519731181206040347983260074898654214646176433207507141059195965432249249455}{1153795010937951052187554670463543300547700065999769628837805912139866159159549295326414663326523269893} a^{12} - \frac{366514859164044860718006096415101114545238685949872313241063727817610882331599868452821071474653470820}{1153795010937951052187554670463543300547700065999769628837805912139866159159549295326414663326523269893} a^{11} + \frac{536175361315361995797201484011158898440889955898473869796880490151653397882215526994965923476875836831}{1153795010937951052187554670463543300547700065999769628837805912139866159159549295326414663326523269893} a^{10} + \frac{327236986721851243056315573253701585288449704007889058109773383288142578241206847624647556380143981375}{1153795010937951052187554670463543300547700065999769628837805912139866159159549295326414663326523269893} a^{9} + \frac{144712179249661039277938072661134334307787818535239405177881931164269486913528134975467912528494502469}{1153795010937951052187554670463543300547700065999769628837805912139866159159549295326414663326523269893} a^{8} + \frac{323621975927643109883642126963727742856421110085139850058301873951697427181487062744819746284047996798}{1153795010937951052187554670463543300547700065999769628837805912139866159159549295326414663326523269893} a^{7} + \frac{278080990079824875846389766020399538195789648720557537792332264747438879952573140744065580603122767821}{1153795010937951052187554670463543300547700065999769628837805912139866159159549295326414663326523269893} a^{6} + \frac{29357483077503511407932507927496368151186285736747591012278293008320358015148420513251250022258177601}{1153795010937951052187554670463543300547700065999769628837805912139866159159549295326414663326523269893} a^{5} - \frac{381106154055462928007976600702060424676182310551807293568067126103743998353973175174275795624110892213}{1153795010937951052187554670463543300547700065999769628837805912139866159159549295326414663326523269893} a^{4} - \frac{531245559323647399234034347110644965701720234248373875876047924831249202024450353054394818296806926998}{1153795010937951052187554670463543300547700065999769628837805912139866159159549295326414663326523269893} a^{3} - \frac{192951216015819757376126412077218336839611766703216507855174812896622836982195728128564625402563277681}{1153795010937951052187554670463543300547700065999769628837805912139866159159549295326414663326523269893} a^{2} + \frac{219823533579650964138412092858184592497354014485308968966982367098221180338562986152205212725651616488}{1153795010937951052187554670463543300547700065999769628837805912139866159159549295326414663326523269893} a + \frac{575956338380050099793195445938736983086012775585440110847718020995450866735365282409394416799091103019}{1153795010937951052187554670463543300547700065999769628837805912139866159159549295326414663326523269893}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $20$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 864898073802425300 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{21}$ (as 21T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 21
The 21 conjugacy class representatives for $C_{21}$
Character table for $C_{21}$ is not computed

Intermediate fields

3.3.667489.2, 7.7.6321363049.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $21$ $21$ $21$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{7}$ ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ $21$ ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ R ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ $21$ $21$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ $21$ R $21$ ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ $21$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
19Data not computed
43Data not computed