Normalized defining polynomial
\( x^{21} - x^{20} - 160 x^{19} + 75 x^{18} + 9107 x^{17} - 4485 x^{16} - 253705 x^{15} + 195358 x^{14} + 3811310 x^{13} - 4575964 x^{12} - 30765519 x^{11} + 53760107 x^{10} + 115833483 x^{9} - 301059030 x^{8} - 85146670 x^{7} + 682493117 x^{6} - 370577748 x^{5} - 444734752 x^{4} + 545440112 x^{3} - 159561140 x^{2} - 12506848 x + 7333121 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(356942299737980709598670980612578149070093175924801=337^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $255.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $337$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(337\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{337}(64,·)$, $\chi_{337}(1,·)$, $\chi_{337}(2,·)$, $\chi_{337}(4,·)$, $\chi_{337}(8,·)$, $\chi_{337}(128,·)$, $\chi_{337}(13,·)$, $\chi_{337}(256,·)$, $\chi_{337}(79,·)$, $\chi_{337}(16,·)$, $\chi_{337}(26,·)$, $\chi_{337}(158,·)$, $\chi_{337}(32,·)$, $\chi_{337}(208,·)$, $\chi_{337}(295,·)$, $\chi_{337}(104,·)$, $\chi_{337}(169,·)$, $\chi_{337}(175,·)$, $\chi_{337}(52,·)$, $\chi_{337}(316,·)$, $\chi_{337}(253,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{59} a^{17} + \frac{8}{59} a^{16} + \frac{9}{59} a^{15} - \frac{27}{59} a^{14} + \frac{29}{59} a^{13} - \frac{20}{59} a^{12} - \frac{10}{59} a^{11} + \frac{6}{59} a^{10} + \frac{17}{59} a^{9} + \frac{27}{59} a^{8} + \frac{9}{59} a^{7} - \frac{21}{59} a^{6} + \frac{27}{59} a^{5} + \frac{9}{59} a^{4} - \frac{22}{59} a^{3} + \frac{12}{59} a^{2} - \frac{8}{59} a + \frac{22}{59}$, $\frac{1}{59} a^{18} + \frac{4}{59} a^{16} + \frac{19}{59} a^{15} + \frac{9}{59} a^{14} - \frac{16}{59} a^{13} - \frac{27}{59} a^{12} + \frac{27}{59} a^{11} + \frac{28}{59} a^{10} + \frac{9}{59} a^{9} + \frac{29}{59} a^{8} + \frac{25}{59} a^{7} + \frac{18}{59} a^{6} + \frac{29}{59} a^{5} + \frac{24}{59} a^{4} + \frac{11}{59} a^{3} + \frac{14}{59} a^{2} + \frac{27}{59} a + \frac{1}{59}$, $\frac{1}{59} a^{19} - \frac{13}{59} a^{16} - \frac{27}{59} a^{15} - \frac{26}{59} a^{14} - \frac{25}{59} a^{13} - \frac{11}{59} a^{12} + \frac{9}{59} a^{11} - \frac{15}{59} a^{10} + \frac{20}{59} a^{9} - \frac{24}{59} a^{8} - \frac{18}{59} a^{7} - \frac{5}{59} a^{6} - \frac{25}{59} a^{5} - \frac{25}{59} a^{4} - \frac{16}{59} a^{3} - \frac{21}{59} a^{2} - \frac{26}{59} a - \frac{29}{59}$, $\frac{1}{1810654795414219711439761144265949364836609748887749507494168293407003} a^{20} + \frac{5385094613061184272359666136459815196924037186131992203010908437011}{1810654795414219711439761144265949364836609748887749507494168293407003} a^{19} - \frac{8779566554147965701284536761763681730509105632514923249847246060665}{1810654795414219711439761144265949364836609748887749507494168293407003} a^{18} + \frac{3312402767190802798664627591485192143819540488030680066692094133654}{1810654795414219711439761144265949364836609748887749507494168293407003} a^{17} - \frac{846106341037194618539994394248996391995694000729445461099812466122746}{1810654795414219711439761144265949364836609748887749507494168293407003} a^{16} + \frac{697868050730973818302156009396446883600902558078455706041947083792025}{1810654795414219711439761144265949364836609748887749507494168293407003} a^{15} - \frac{285315780476896941490934408336365556360150385341584378711381007351261}{1810654795414219711439761144265949364836609748887749507494168293407003} a^{14} + \frac{401697750940940912389125128688840582850425050394121343993888549501084}{1810654795414219711439761144265949364836609748887749507494168293407003} a^{13} + \frac{397191362255957100209127591855590236680677709000730428108638451947741}{1810654795414219711439761144265949364836609748887749507494168293407003} a^{12} - \frac{172711184019079963121548287769966115229186265948303241285839479839193}{1810654795414219711439761144265949364836609748887749507494168293407003} a^{11} - \frac{576173890414037285181618394798471098022076098741803809284025318212056}{1810654795414219711439761144265949364836609748887749507494168293407003} a^{10} - \frac{742977944044699786417798554852804934153611138603144280645829097210030}{1810654795414219711439761144265949364836609748887749507494168293407003} a^{9} + \frac{206371974115138038684666382092646332760808379190871627937453804422790}{1810654795414219711439761144265949364836609748887749507494168293407003} a^{8} - \frac{190843032569828450307039795776541607884169095073383196338468174150312}{1810654795414219711439761144265949364836609748887749507494168293407003} a^{7} + \frac{114227242021283017775881182556821988731362215841284410217560779733410}{1810654795414219711439761144265949364836609748887749507494168293407003} a^{6} + \frac{456812862030134796974650600155268494618478890040436608239191251463870}{1810654795414219711439761144265949364836609748887749507494168293407003} a^{5} - \frac{557090224116122133930460062223695313477250238736985856792885060612522}{1810654795414219711439761144265949364836609748887749507494168293407003} a^{4} - \frac{379335504307604106141765677918049834835306048557620467981781354732082}{1810654795414219711439761144265949364836609748887749507494168293407003} a^{3} - \frac{118786261088158854440676888921652292279487577284510399514816475379353}{1810654795414219711439761144265949364836609748887749507494168293407003} a^{2} + \frac{496683613132120124575436188464247321279753899952503256103163584438081}{1810654795414219711439761144265949364836609748887749507494168293407003} a - \frac{39007749806498226233636789657596783560919343875914320098480421726968}{1810654795414219711439761144265949364836609748887749507494168293407003}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3025545659707238400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| 3.3.113569.1, 7.7.1464803622199009.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | $21$ | $21$ | $21$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{21}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 337 | Data not computed | ||||||