Normalized defining polynomial
\( x^{21} - 2 x^{20} - 43 x^{19} + 68 x^{18} + 733 x^{17} - 988 x^{16} - 6395 x^{15} + 8040 x^{14} + 30708 x^{13} - 39018 x^{12} - 79894 x^{11} + 110250 x^{10} + 98768 x^{9} - 165588 x^{8} - 29458 x^{7} + 106634 x^{6} - 26074 x^{5} - 14068 x^{4} + 6574 x^{3} - 756 x^{2} - 8 x + 4 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(354339010128398236785800917962194944=2^{22}\cdot 4129^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 4129$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{12}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{12}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{12}$, $\frac{1}{8} a^{17} - \frac{1}{4} a^{16} - \frac{1}{8} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} + \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{112} a^{18} + \frac{3}{112} a^{17} - \frac{23}{112} a^{16} - \frac{17}{112} a^{15} + \frac{9}{56} a^{14} + \frac{1}{7} a^{13} + \frac{1}{7} a^{12} - \frac{3}{8} a^{11} + \frac{9}{56} a^{10} - \frac{17}{56} a^{9} + \frac{9}{28} a^{8} - \frac{1}{8} a^{7} + \frac{2}{7} a^{6} + \frac{9}{56} a^{5} + \frac{19}{56} a^{4} - \frac{1}{8} a^{3} - \frac{9}{28} a^{2} + \frac{1}{4} a + \frac{13}{28}$, $\frac{1}{448} a^{19} - \frac{1}{112} a^{17} - \frac{1}{112} a^{16} - \frac{71}{448} a^{15} - \frac{19}{224} a^{14} - \frac{11}{56} a^{13} - \frac{73}{224} a^{12} - \frac{3}{56} a^{11} + \frac{17}{56} a^{10} + \frac{41}{224} a^{9} - \frac{61}{224} a^{8} - \frac{19}{224} a^{7} + \frac{101}{224} a^{6} - \frac{9}{56} a^{5} - \frac{2}{7} a^{4} + \frac{87}{224} a^{3} - \frac{11}{56} a^{2} + \frac{3}{7} a - \frac{39}{112}$, $\frac{1}{64908932073646612411264} a^{20} + \frac{19020507732273282493}{64908932073646612411264} a^{19} - \frac{72232982023965513483}{16227233018411653102816} a^{18} - \frac{96404187614170165453}{4056808254602913275704} a^{17} + \frac{145084444610714208059}{9272704581949516058752} a^{16} - \frac{10462198930791837384361}{64908932073646612411264} a^{15} + \frac{12418432170456579637}{32454466036823306205632} a^{14} + \frac{5372066373059324021675}{32454466036823306205632} a^{13} + \frac{12320939786678765230271}{32454466036823306205632} a^{12} - \frac{232454815407912228833}{2028404127301456637852} a^{11} - \frac{863543984308370411371}{32454466036823306205632} a^{10} + \frac{308343456616231060179}{2028404127301456637852} a^{9} + \frac{1749086485154982716349}{8113616509205826551408} a^{8} + \frac{2404864391735032720651}{16227233018411653102816} a^{7} - \frac{14879366014576317284563}{32454466036823306205632} a^{6} - \frac{1910514100603095319543}{8113616509205826551408} a^{5} - \frac{5115703795239318650081}{32454466036823306205632} a^{4} - \frac{3009165760877217635545}{32454466036823306205632} a^{3} - \frac{3165741525405458943011}{8113616509205826551408} a^{2} + \frac{6932004577273342017441}{16227233018411653102816} a + \frac{1275528559471777447997}{16227233018411653102816}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 646551468945 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\PSL(2,7)$ (as 21T14):
| A non-solvable group of order 168 |
| The 6 conjugacy class representatives for $\PSL(2,7)$ |
| Character table for $\PSL(2,7)$ |
Intermediate fields
| 7.7.1091113024.1, 7.7.1091113024.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 siblings: | 7.7.1091113024.1, 7.7.1091113024.2 |
| Degree 8 sibling: | 8.8.74407976946401536.1 |
| Degree 14 siblings: | Deg 14, Deg 14 |
| Degree 24 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.6.7 | $x^{6} + 2 x^{2} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 2.12.14.1 | $x^{12} + 2 x^{3} + 2$ | $12$ | $1$ | $14$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 4129 | Data not computed | ||||||