Normalized defining polynomial
\( x^{21} - 217 x^{19} + 19544 x^{17} - 959637 x^{15} - 33706 x^{14} + 28285005 x^{13} + 3493224 x^{12} - 517708667 x^{11} - 143018778 x^{10} + 5859384083 x^{9} + 2942499210 x^{8} - 39262594646 x^{7} - 31779062112 x^{6} + 138562884152 x^{5} + 168986405644 x^{4} - 168971552743 x^{3} - 345735927544 x^{2} - 146449603860 x - 6727656872 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(35135593769377589230177713282906868218673215743721472=2^{18}\cdot 7^{35}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $317.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{203} a^{11} + \frac{1}{7} a^{10} + \frac{73}{203} a^{9} - \frac{3}{7} a^{8} - \frac{89}{203} a^{7} - \frac{8}{29} a^{5} + \frac{79}{203} a^{4} + \frac{2}{7} a^{3} - \frac{1}{7} a^{2} + \frac{1}{7} a - \frac{3}{7}$, $\frac{1}{609} a^{12} + \frac{1}{609} a^{11} - \frac{130}{609} a^{10} - \frac{304}{609} a^{9} + \frac{38}{203} a^{8} + \frac{8}{87} a^{7} - \frac{37}{87} a^{6} + \frac{23}{609} a^{5} + \frac{79}{609} a^{4} + \frac{2}{7} a^{3} + \frac{8}{21} a^{2} - \frac{1}{7} a + \frac{1}{3}$, $\frac{1}{1218} a^{13} + \frac{1}{1218} a^{11} - \frac{299}{1218} a^{9} - \frac{10}{21} a^{8} + \frac{39}{406} a^{7} + \frac{47}{203} a^{6} + \frac{83}{174} a^{5} + \frac{85}{609} a^{4} - \frac{1}{6} a^{3} + \frac{2}{21} a^{2} - \frac{5}{42} a - \frac{2}{21}$, $\frac{1}{35322} a^{14} + \frac{5}{11774} a^{12} - \frac{1}{609} a^{11} + \frac{1487}{5046} a^{10} + \frac{82}{203} a^{9} + \frac{3471}{11774} a^{8} - \frac{4180}{17661} a^{7} - \frac{15}{58} a^{6} - \frac{100}{203} a^{5} + \frac{15}{406} a^{4} + \frac{1}{3} a^{3} - \frac{17}{42} a^{2} - \frac{10}{21} a - \frac{4}{21}$, $\frac{1}{35322} a^{15} - \frac{1}{2523} a^{13} - \frac{1}{17661} a^{11} - \frac{8}{21} a^{10} + \frac{2736}{5887} a^{9} + \frac{830}{5887} a^{8} + \frac{26}{609} a^{7} - \frac{13}{87} a^{6} + \frac{13}{87} a^{5} - \frac{16}{609} a^{4} - \frac{2}{21} a^{3} + \frac{8}{21} a^{2} + \frac{3}{14} a + \frac{1}{7}$, $\frac{1}{35322} a^{16} - \frac{4}{5887} a^{12} - \frac{1}{609} a^{11} + \frac{5323}{17661} a^{10} - \frac{6355}{17661} a^{9} - \frac{2654}{17661} a^{8} - \frac{3884}{17661} a^{7} + \frac{20}{87} a^{6} + \frac{6}{203} a^{5} + \frac{124}{609} a^{4} - \frac{8}{21} a^{3} + \frac{1}{6} a^{2} - \frac{2}{21} a + \frac{3}{7}$, $\frac{1}{1024338} a^{17} - \frac{1}{73167} a^{15} - \frac{59}{512169} a^{13} + \frac{610}{512169} a^{11} + \frac{56314}{512169} a^{10} + \frac{2582}{17661} a^{9} + \frac{286}{17661} a^{8} - \frac{10}{29} a^{7} - \frac{181}{609} a^{6} + \frac{1}{29} a^{5} + \frac{128}{609} a^{4} - \frac{449}{1218} a^{3} - \frac{3}{7} a^{2} + \frac{5}{21} a$, $\frac{1}{1024338} a^{18} - \frac{1}{73167} a^{16} - \frac{1}{512169} a^{14} - \frac{202}{512169} a^{12} + \frac{808}{512169} a^{11} - \frac{1859}{17661} a^{10} + \frac{7739}{17661} a^{9} + \frac{185}{5887} a^{8} + \frac{6016}{17661} a^{7} - \frac{13}{87} a^{6} - \frac{194}{609} a^{5} - \frac{107}{406} a^{4} - \frac{8}{21} a^{3} - \frac{2}{7} a^{2} - \frac{10}{21} a + \frac{1}{7}$, $\frac{1}{29705802} a^{19} - \frac{1}{2121843} a^{17} - \frac{59}{14852901} a^{15} + \frac{3974}{14852901} a^{13} + \frac{2512}{4950967} a^{12} - \frac{724}{512169} a^{11} - \frac{55691}{170723} a^{10} + \frac{5147}{17661} a^{9} - \frac{848}{17661} a^{8} + \frac{47}{609} a^{7} - \frac{1679}{5887} a^{6} - \frac{10019}{35322} a^{5} - \frac{139}{609} a^{4} - \frac{176}{609} a^{3} + \frac{4}{21} a^{2} - \frac{4}{21} a - \frac{4}{21}$, $\frac{1}{17792022752530611079532327640320616811149720030413412} a^{20} + \frac{18694682276312134497982345768977417346181113}{4448005688132652769883081910080154202787430007603353} a^{19} - \frac{2284698150384745391002182772718456815400832887}{17792022752530611079532327640320616811149720030413412} a^{18} - \frac{1182189242560141238616839850570352608417210909}{2965337125421768513255387940053436135191620005068902} a^{17} + \frac{8238352223492449746226786851933251872089441586}{635429384018950395697583130011450600398204286800479} a^{16} - \frac{123640784580338474738458102436973394419038018065}{8896011376265305539766163820160308405574860015206706} a^{15} - \frac{21043797136030981164334943042543865373237407877}{2541717536075801582790332520045802401592817147201916} a^{14} - \frac{32801175559589820051214569020977685786713182468}{211809794672983465232527710003816866799401428933493} a^{13} - \frac{1699870557570381669574324300556237551212633373055}{2541717536075801582790332520045802401592817147201916} a^{12} - \frac{192876393391526926829214669302676040239005027323}{102253004324888569422599584139773659834193793278238} a^{11} - \frac{31990502688820529398664140497395567765602560785415}{204506008649777138845199168279547319668387586556476} a^{10} + \frac{1436464234858423540257435105067821773506420192625}{5288948499563201866686185386540016887975541031633} a^{9} + \frac{2467895691389645342337464760465444286997250863435}{7051931332750935822248247182053355850634054708844} a^{8} + \frac{1009914710488624855750113794371100606836124656541}{5288948499563201866686185386540016887975541031633} a^{7} - \frac{1072824633615086013005429482434459995007045118789}{5288948499563201866686185386540016887975541031633} a^{6} + \frac{1329160327324982977578012586151331983100942473539}{3525965666375467911124123591026677925317027354422} a^{5} + \frac{80921748625903260284930966720959794715194032842}{182377534467696616092627082294483340964673828677} a^{4} - \frac{3223074142113466190718542150122478436559598450}{60792511489232205364209027431494446988224609559} a^{3} - \frac{5013336199939937684236068629099758870322225897}{25155521995544360840362356178549426339955010852} a^{2} - \frac{2385937425975839349892587824532003137870387720}{6288880498886090210090589044637356584988752713} a - \frac{393817543068785918236506664766566774673002769}{6288880498886090210090589044637356584988752713}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 100927220322000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_7:D_7:C_3$ (as 21T19):
| A solvable group of order 294 |
| The 14 conjugacy class representatives for $C_7:D_7:C_3$ |
| Character table for $C_7:D_7:C_3$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| $29$ | 29.7.0.1 | $x^{7} - x + 3$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 29.7.6.3 | $x^{7} + 928$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 29.7.6.4 | $x^{7} - 1856$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |