Normalized defining polynomial
\( x^{21} - 8 x^{20} - 46 x^{19} + 443 x^{18} + 633 x^{17} - 9908 x^{16} + 1593 x^{15} + 113179 x^{14} - 126711 x^{13} - 670395 x^{12} + 1329837 x^{11} + 1638285 x^{10} - 5996879 x^{9} + 1362401 x^{8} + 10533483 x^{7} - 11794543 x^{6} - 70574 x^{5} + 7974959 x^{4} - 5871123 x^{3} + 1812636 x^{2} - 236758 x + 9175 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33892626352023444868618939918566086658794963687233335938252800=2^{18}\cdot 5^{2}\cdot 37^{7}\cdot 3907^{2}\cdot 1889135899773996787^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $851.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 37, 3907, 1889135899773996787$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{3}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{8} a^{11} + \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{3} + \frac{3}{8} a + \frac{1}{8}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} + \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} - \frac{3}{8} a^{4} + \frac{3}{8} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a - \frac{1}{8}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{12} + \frac{3}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{3}{8}$, $\frac{1}{16} a^{17} - \frac{1}{16} a^{14} - \frac{1}{8} a^{12} + \frac{1}{16} a^{11} + \frac{3}{16} a^{9} - \frac{1}{16} a^{8} + \frac{1}{8} a^{7} - \frac{1}{16} a^{6} - \frac{1}{8} a^{5} - \frac{1}{2} a^{4} + \frac{5}{16} a^{3} - \frac{3}{8} a^{2} + \frac{3}{8} a + \frac{3}{16}$, $\frac{1}{16} a^{18} - \frac{1}{16} a^{15} - \frac{1}{8} a^{13} + \frac{1}{16} a^{12} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} + \frac{1}{8} a^{8} - \frac{1}{16} a^{7} + \frac{1}{8} a^{6} - \frac{7}{16} a^{4} + \frac{1}{8} a^{3} - \frac{1}{8} a^{2} + \frac{3}{16} a + \frac{1}{4}$, $\frac{1}{23826571808} a^{19} + \frac{13139323}{11913285904} a^{18} - \frac{105384677}{23826571808} a^{17} - \frac{700710951}{23826571808} a^{16} - \frac{508909}{2978321476} a^{15} - \frac{741910735}{23826571808} a^{14} - \frac{1682126059}{23826571808} a^{13} + \frac{282907845}{5956642952} a^{12} - \frac{242230491}{11913285904} a^{11} + \frac{1486922211}{23826571808} a^{10} + \frac{478495503}{23826571808} a^{9} - \frac{853631365}{5956642952} a^{8} - \frac{1354460499}{5956642952} a^{7} - \frac{4904521221}{23826571808} a^{6} + \frac{2487208675}{23826571808} a^{5} - \frac{2455450079}{5956642952} a^{4} - \frac{7298301671}{23826571808} a^{3} + \frac{5222593227}{23826571808} a^{2} - \frac{4350887625}{11913285904} a - \frac{11210174221}{23826571808}$, $\frac{1}{17740797628805637152} a^{20} + \frac{13139319}{17740797628805637152} a^{19} + \frac{172641808898267}{17740797628805637152} a^{18} - \frac{51828949420251015}{4435199407201409288} a^{17} + \frac{755521075117495057}{17740797628805637152} a^{16} - \frac{42214447749271745}{17740797628805637152} a^{15} + \frac{39998535383752021}{682338370338678352} a^{14} - \frac{1684314519112300191}{17740797628805637152} a^{13} - \frac{154426333733321971}{2217599703600704644} a^{12} - \frac{844259921508884791}{17740797628805637152} a^{11} + \frac{55877149158677811}{1108799851800352322} a^{10} - \frac{1338343076678266619}{17740797628805637152} a^{9} - \frac{319927821460368051}{2217599703600704644} a^{8} + \frac{4415889131972303213}{17740797628805637152} a^{7} + \frac{215896273197280287}{8870398814402818576} a^{6} - \frac{3701656575557226853}{17740797628805637152} a^{5} + \frac{3116106076497837807}{17740797628805637152} a^{4} - \frac{1101047000123589127}{4435199407201409288} a^{3} - \frac{8279283558999413131}{17740797628805637152} a^{2} - \frac{256065842467462773}{17740797628805637152} a + \frac{562193694448047695}{17740797628805637152}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12395911170400000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 96018048000 |
| The 255 conjugacy class representatives for t21n156 are not computed |
| Character table for t21n156 is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | R | $21$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.12.12.34 | $x^{12} + 2 x^{11} + 2 x^{9} + 2 x^{7} + 2 x^{5} + 2 x^{3} + 2 x + 2$ | $12$ | $1$ | $12$ | 12T254 | $[10/9, 10/9, 10/9, 10/9, 10/9, 10/9]_{9}^{6}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.3.2.1 | $x^{3} - 5$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 37 | Data not computed | ||||||
| 3907 | Data not computed | ||||||
| 1889135899773996787 | Data not computed | ||||||