Properties

Label 21.21.3308969060...5193.1
Degree $21$
Signature $[21, 0]$
Discriminant $71^{5}\cdot 283583^{5}$
Root discriminant $54.83$
Ramified primes $71, 283583$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 21T38

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -5, -21, 121, 87, -903, 105, 3112, -1441, -5631, 3675, 5538, -4388, -2843, 2723, 633, -857, -9, 122, -13, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^21 - 6*x^20 - 13*x^19 + 122*x^18 - 9*x^17 - 857*x^16 + 633*x^15 + 2723*x^14 - 2843*x^13 - 4388*x^12 + 5538*x^11 + 3675*x^10 - 5631*x^9 - 1441*x^8 + 3112*x^7 + 105*x^6 - 903*x^5 + 87*x^4 + 121*x^3 - 21*x^2 - 5*x + 1)
 
gp: K = bnfinit(x^21 - 6*x^20 - 13*x^19 + 122*x^18 - 9*x^17 - 857*x^16 + 633*x^15 + 2723*x^14 - 2843*x^13 - 4388*x^12 + 5538*x^11 + 3675*x^10 - 5631*x^9 - 1441*x^8 + 3112*x^7 + 105*x^6 - 903*x^5 + 87*x^4 + 121*x^3 - 21*x^2 - 5*x + 1, 1)
 

Normalized defining polynomial

\( x^{21} - 6 x^{20} - 13 x^{19} + 122 x^{18} - 9 x^{17} - 857 x^{16} + 633 x^{15} + 2723 x^{14} - 2843 x^{13} - 4388 x^{12} + 5538 x^{11} + 3675 x^{10} - 5631 x^{9} - 1441 x^{8} + 3112 x^{7} + 105 x^{6} - 903 x^{5} + 87 x^{4} + 121 x^{3} - 21 x^{2} - 5 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $21$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[21, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3308969060286554443983958344548655193=71^{5}\cdot 283583^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $54.83$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $71, 283583$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{1873282645} a^{20} + \frac{68974636}{1873282645} a^{19} - \frac{177020401}{1873282645} a^{18} + \frac{148961119}{374656529} a^{17} + \frac{15850022}{144098665} a^{16} - \frac{82582726}{374656529} a^{15} + \frac{903894308}{1873282645} a^{14} + \frac{694070454}{1873282645} a^{13} + \frac{23131848}{374656529} a^{12} + \frac{53393944}{144098665} a^{11} + \frac{27476614}{144098665} a^{10} - \frac{816661941}{1873282645} a^{9} - \frac{289585633}{1873282645} a^{8} + \frac{39339818}{1873282645} a^{7} - \frac{3721864}{144098665} a^{6} - \frac{202772374}{1873282645} a^{5} - \frac{755936256}{1873282645} a^{4} - \frac{103500057}{374656529} a^{3} - \frac{171795569}{1873282645} a^{2} - \frac{453729504}{1873282645} a - \frac{316700478}{1873282645}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $20$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 324140206962 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

21T38:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 5040
The 15 conjugacy class representatives for t21n38
Character table for t21n38

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Degree 7 sibling: 7.7.20134393.1
Degree 14 sibling: Deg 14
Degree 30 sibling: data not computed
Degree 35 sibling: data not computed
Degree 42 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
71Data not computed
283583Data not computed