Properties

Label 21.21.3265364406...1129.2
Degree $21$
Signature $[21, 0]$
Discriminant $3^{28}\cdot 7^{14}\cdot 29^{18}$
Root discriminant $283.82$
Ramified primes $3, 7, 29$
Class number $3$ (GRH)
Class group $[3]$ (GRH)
Galois group $C_{21}$ (as 21T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![72232579, 2403226995, 14346185940, 29396147584, 16098793473, -12395275152, -14780825192, -675851490, 3784485999, 922946239, -417305250, -159042903, 21281696, 12659553, -398277, -551346, -5157, 13605, 295, -180, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^21 - 3*x^20 - 180*x^19 + 295*x^18 + 13605*x^17 - 5157*x^16 - 551346*x^15 - 398277*x^14 + 12659553*x^13 + 21281696*x^12 - 159042903*x^11 - 417305250*x^10 + 922946239*x^9 + 3784485999*x^8 - 675851490*x^7 - 14780825192*x^6 - 12395275152*x^5 + 16098793473*x^4 + 29396147584*x^3 + 14346185940*x^2 + 2403226995*x + 72232579)
 
gp: K = bnfinit(x^21 - 3*x^20 - 180*x^19 + 295*x^18 + 13605*x^17 - 5157*x^16 - 551346*x^15 - 398277*x^14 + 12659553*x^13 + 21281696*x^12 - 159042903*x^11 - 417305250*x^10 + 922946239*x^9 + 3784485999*x^8 - 675851490*x^7 - 14780825192*x^6 - 12395275152*x^5 + 16098793473*x^4 + 29396147584*x^3 + 14346185940*x^2 + 2403226995*x + 72232579, 1)
 

Normalized defining polynomial

\( x^{21} - 3 x^{20} - 180 x^{19} + 295 x^{18} + 13605 x^{17} - 5157 x^{16} - 551346 x^{15} - 398277 x^{14} + 12659553 x^{13} + 21281696 x^{12} - 159042903 x^{11} - 417305250 x^{10} + 922946239 x^{9} + 3784485999 x^{8} - 675851490 x^{7} - 14780825192 x^{6} - 12395275152 x^{5} + 16098793473 x^{4} + 29396147584 x^{3} + 14346185940 x^{2} + 2403226995 x + 72232579 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $21$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[21, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3265364406784528133678938964803591475967396373221129=3^{28}\cdot 7^{14}\cdot 29^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $283.82$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 7, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1827=3^{2}\cdot 7\cdot 29\)
Dirichlet character group:    $\lbrace$$\chi_{1827}(1,·)$, $\chi_{1827}(1474,·)$, $\chi_{1827}(1096,·)$, $\chi_{1827}(529,·)$, $\chi_{1827}(277,·)$, $\chi_{1827}(88,·)$, $\chi_{1827}(25,·)$, $\chi_{1827}(1822,·)$, $\chi_{1827}(1444,·)$, $\chi_{1827}(1765,·)$, $\chi_{1827}(1702,·)$, $\chi_{1827}(625,·)$, $\chi_{1827}(1387,·)$, $\chi_{1827}(877,·)$, $\chi_{1827}(1009,·)$, $\chi_{1827}(436,·)$, $\chi_{1827}(373,·)$, $\chi_{1827}(310,·)$, $\chi_{1827}(442,·)$, $\chi_{1827}(1789,·)$, $\chi_{1827}(190,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{6494} a^{18} + \frac{1485}{6494} a^{17} + \frac{291}{3247} a^{16} - \frac{341}{3247} a^{15} - \frac{12}{191} a^{14} - \frac{1050}{3247} a^{13} - \frac{2617}{6494} a^{12} + \frac{609}{3247} a^{11} - \frac{907}{3247} a^{10} + \frac{693}{6494} a^{9} - \frac{2141}{6494} a^{8} + \frac{1079}{3247} a^{7} - \frac{523}{6494} a^{6} - \frac{30}{3247} a^{5} + \frac{351}{3247} a^{4} + \frac{1271}{3247} a^{3} + \frac{2563}{6494} a^{2} + \frac{1967}{6494} a + \frac{2525}{6494}$, $\frac{1}{383146} a^{19} + \frac{5}{383146} a^{18} + \frac{31347}{191573} a^{17} - \frac{15405}{191573} a^{16} - \frac{47514}{191573} a^{15} - \frac{5449}{383146} a^{14} - \frac{59444}{191573} a^{13} - \frac{142161}{383146} a^{12} + \frac{172969}{383146} a^{11} - \frac{171947}{383146} a^{10} + \frac{128151}{383146} a^{9} + \frac{72317}{191573} a^{8} + \frac{63659}{191573} a^{7} + \frac{62290}{191573} a^{6} - \frac{85129}{191573} a^{5} + \frac{129255}{383146} a^{4} - \frac{85831}{191573} a^{3} + \frac{157079}{383146} a^{2} + \frac{70149}{191573} a + \frac{3197}{6494}$, $\frac{1}{1544452060404108780683627922243920104632160522552923235765660119209546847642254} a^{20} + \frac{800332443477385197208090305658952037188711313393829221782550605823034113}{1544452060404108780683627922243920104632160522552923235765660119209546847642254} a^{19} - \frac{22572259698976076091179360338717677865149920079454874733810425576825707928}{772226030202054390341813961121960052316080261276461617882830059604773423821127} a^{18} + \frac{163149291891538165338666912141572051871488301425702616723616629699997352503603}{1544452060404108780683627922243920104632160522552923235765660119209546847642254} a^{17} + \frac{140977768718030125684291589517044342252951115639827040970613489899544002554236}{772226030202054390341813961121960052316080261276461617882830059604773423821127} a^{16} - \frac{78230815571806577723343821258014467165589675390413097627907880801342228862221}{772226030202054390341813961121960052316080261276461617882830059604773423821127} a^{15} + \frac{83105781848761853325012163911716419365845503977304990428605029839285302052447}{1544452060404108780683627922243920104632160522552923235765660119209546847642254} a^{14} - \frac{720780288207719224539524317387623432160588642366373605753670574983463497966233}{1544452060404108780683627922243920104632160522552923235765660119209546847642254} a^{13} - \frac{324843841073390356956288086258659442179136199782169166939379966476051984131565}{772226030202054390341813961121960052316080261276461617882830059604773423821127} a^{12} - \frac{599924717567822018617547370054673493269136404274546131279900662200925710975939}{1544452060404108780683627922243920104632160522552923235765660119209546847642254} a^{11} + \frac{23355786758450618273268703518849478449663580298020001180467678465956489895698}{772226030202054390341813961121960052316080261276461617882830059604773423821127} a^{10} - \frac{18961929367051044890220332315897132274758007834758956358672808238755660028919}{90850121200241692981389877779054123801891795444289602103862359953502755743662} a^{9} - \frac{707015561912975587939197341585732147751407596089978862099884623686356249629105}{1544452060404108780683627922243920104632160522552923235765660119209546847642254} a^{8} - \frac{451112986673567526337521120432804615839410974265226989381831155946259180443685}{1544452060404108780683627922243920104632160522552923235765660119209546847642254} a^{7} + \frac{186621750149193270231004463229740893406428103338446120384965489590756855413532}{772226030202054390341813961121960052316080261276461617882830059604773423821127} a^{6} + \frac{279884203617479726692280584922380471068033258483515673599885340104250416962399}{1544452060404108780683627922243920104632160522552923235765660119209546847642254} a^{5} - \frac{246378374598503884778561008087418615979665137261894029872059038774749356116463}{772226030202054390341813961121960052316080261276461617882830059604773423821127} a^{4} + \frac{231449792352017949103256391026006959491819577140731801589764250770659051228465}{1544452060404108780683627922243920104632160522552923235765660119209546847642254} a^{3} - \frac{223230368619724536488661105163059496473832107814703359811365651690262708760276}{772226030202054390341813961121960052316080261276461617882830059604773423821127} a^{2} - \frac{118944438954503230842732499953694629111878935074924339335331551825344004434405}{772226030202054390341813961121960052316080261276461617882830059604773423821127} a - \frac{5811283986489497978269808956311678851760806552610888102152717133911883500151}{13088576783085667632912101035965424615526784089431552845471695925504634302053}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $20$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4220636828185508400 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{21}$ (as 21T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 21
The 21 conjugacy class representatives for $C_{21}$
Character table for $C_{21}$ is not computed

Intermediate fields

3.3.3969.1, 7.7.594823321.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ R $21$ R $21$ $21$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ $21$ $21$ R ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ $21$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{7}$ $21$ ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ $21$ ${\href{/LocalNumberField/59.1.0.1}{1} }^{21}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
7Data not computed
29Data not computed