Properties

Label 21.21.3265364406...1129.1
Degree $21$
Signature $[21, 0]$
Discriminant $3^{28}\cdot 7^{14}\cdot 29^{18}$
Root discriminant $283.82$
Ramified primes $3, 7, 29$
Class number $3$ (GRH)
Class group $[3]$ (GRH)
Galois group $C_{21}$ (as 21T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1693276957, 2145270072, 22576339788, 29275076935, -2530942323, -26746513641, -13678950530, 3799626111, 4704604611, 459856514, -580762089, -140147985, 32581845, 12481956, -788016, -557982, 1647, 13731, 246, -180, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^21 - 3*x^20 - 180*x^19 + 246*x^18 + 13731*x^17 + 1647*x^16 - 557982*x^15 - 788016*x^14 + 12481956*x^13 + 32581845*x^12 - 140147985*x^11 - 580762089*x^10 + 459856514*x^9 + 4704604611*x^8 + 3799626111*x^7 - 13678950530*x^6 - 26746513641*x^5 - 2530942323*x^4 + 29275076935*x^3 + 22576339788*x^2 + 2145270072*x - 1693276957)
 
gp: K = bnfinit(x^21 - 3*x^20 - 180*x^19 + 246*x^18 + 13731*x^17 + 1647*x^16 - 557982*x^15 - 788016*x^14 + 12481956*x^13 + 32581845*x^12 - 140147985*x^11 - 580762089*x^10 + 459856514*x^9 + 4704604611*x^8 + 3799626111*x^7 - 13678950530*x^6 - 26746513641*x^5 - 2530942323*x^4 + 29275076935*x^3 + 22576339788*x^2 + 2145270072*x - 1693276957, 1)
 

Normalized defining polynomial

\( x^{21} - 3 x^{20} - 180 x^{19} + 246 x^{18} + 13731 x^{17} + 1647 x^{16} - 557982 x^{15} - 788016 x^{14} + 12481956 x^{13} + 32581845 x^{12} - 140147985 x^{11} - 580762089 x^{10} + 459856514 x^{9} + 4704604611 x^{8} + 3799626111 x^{7} - 13678950530 x^{6} - 26746513641 x^{5} - 2530942323 x^{4} + 29275076935 x^{3} + 22576339788 x^{2} + 2145270072 x - 1693276957 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $21$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[21, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3265364406784528133678938964803591475967396373221129=3^{28}\cdot 7^{14}\cdot 29^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $283.82$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 7, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1827=3^{2}\cdot 7\cdot 29\)
Dirichlet character group:    $\lbrace$$\chi_{1827}(256,·)$, $\chi_{1827}(1,·)$, $\chi_{1827}(835,·)$, $\chi_{1827}(1654,·)$, $\chi_{1827}(268,·)$, $\chi_{1827}(16,·)$, $\chi_{1827}(442,·)$, $\chi_{1827}(1765,·)$, $\chi_{1827}(1702,·)$, $\chi_{1827}(1705,·)$, $\chi_{1827}(1387,·)$, $\chi_{1827}(1009,·)$, $\chi_{1827}(1138,·)$, $\chi_{1827}(886,·)$, $\chi_{1827}(1591,·)$, $\chi_{1827}(1528,·)$, $\chi_{1827}(697,·)$, $\chi_{1827}(634,·)$, $\chi_{1827}(571,·)$, $\chi_{1827}(1213,·)$, $\chi_{1827}(190,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{17} a^{18} + \frac{6}{17} a^{17} + \frac{4}{17} a^{16} + \frac{7}{17} a^{15} - \frac{6}{17} a^{14} + \frac{4}{17} a^{12} - \frac{7}{17} a^{11} - \frac{7}{17} a^{10} - \frac{6}{17} a^{9} - \frac{7}{17} a^{8} + \frac{2}{17} a^{5} + \frac{6}{17} a^{4} - \frac{6}{17} a^{3} - \frac{4}{17} a^{2} + \frac{8}{17} a + \frac{2}{17}$, $\frac{1}{17} a^{19} + \frac{2}{17} a^{17} + \frac{3}{17} a^{15} + \frac{2}{17} a^{14} + \frac{4}{17} a^{13} + \frac{3}{17} a^{12} + \frac{1}{17} a^{11} + \frac{2}{17} a^{10} - \frac{5}{17} a^{9} + \frac{8}{17} a^{8} + \frac{2}{17} a^{6} - \frac{6}{17} a^{5} - \frac{8}{17} a^{4} - \frac{2}{17} a^{3} - \frac{2}{17} a^{2} + \frac{5}{17} a + \frac{5}{17}$, $\frac{1}{1352545526336251861297614318658517447864307032751759129401612172768748969602148961903} a^{20} + \frac{591667683439965762468383817882428395844766969180633663698219731915981899479934238}{79561501549191285958683195215206908697900413691279948788330127809926409976596997759} a^{19} - \frac{30521589947021915226853440786493620794317405536497382581932732694395444632695662787}{1352545526336251861297614318658517447864307032751759129401612172768748969602148961903} a^{18} + \frac{159434569063990201893224305173480777960741838322678164078925386452976328694578915472}{1352545526336251861297614318658517447864307032751759129401612172768748969602148961903} a^{17} + \frac{306697761403581480184960436068391052026592072887608297586352133981593382510288749799}{1352545526336251861297614318658517447864307032751759129401612172768748969602148961903} a^{16} - \frac{537855522845234455351242854546585282907512788000019848907905544783758040776063145034}{1352545526336251861297614318658517447864307032751759129401612172768748969602148961903} a^{15} - \frac{593491167504108316459659829588341818249429988909042060524096798673957158910225329324}{1352545526336251861297614318658517447864307032751759129401612172768748969602148961903} a^{14} - \frac{489643129888101316384914647238322272968816459704436308696031341713390935410379308811}{1352545526336251861297614318658517447864307032751759129401612172768748969602148961903} a^{13} - \frac{136505351117912933759746992582147178176913720597610248397039087482794805860995454604}{1352545526336251861297614318658517447864307032751759129401612172768748969602148961903} a^{12} - \frac{422833564646701004164871662954432436309677031081186989631899961189947111952376241917}{1352545526336251861297614318658517447864307032751759129401612172768748969602148961903} a^{11} - \frac{323688969616998174005035698765213952091630251508693883480778093281297003510119559695}{1352545526336251861297614318658517447864307032751759129401612172768748969602148961903} a^{10} + \frac{408292176023361030860145973956478387270169675272347852127368851293439344422815871445}{1352545526336251861297614318658517447864307032751759129401612172768748969602148961903} a^{9} + \frac{233156590841241839848265336528791954020004542275572069249582297580618381888030002218}{1352545526336251861297614318658517447864307032751759129401612172768748969602148961903} a^{8} - \frac{553059647152200315111882834608120945727499698780217990844475320499938039880877600648}{1352545526336251861297614318658517447864307032751759129401612172768748969602148961903} a^{7} + \frac{118681025537984327436633055452096349525327960345760529142301283366520948761808265468}{1352545526336251861297614318658517447864307032751759129401612172768748969602148961903} a^{6} - \frac{101065295952068844119266056842353189610028531335335862741125584302683366890970801153}{1352545526336251861297614318658517447864307032751759129401612172768748969602148961903} a^{5} - \frac{460559404204718220259621729993282878903333172134415926719528358809696566326037956384}{1352545526336251861297614318658517447864307032751759129401612172768748969602148961903} a^{4} + \frac{7173973539181933865415337648217663704632395546992798631382390024977743611243253667}{79561501549191285958683195215206908697900413691279948788330127809926409976596997759} a^{3} + \frac{530084635808074082754714203102812119566199493673535889276243459626210115043140352615}{1352545526336251861297614318658517447864307032751759129401612172768748969602148961903} a^{2} + \frac{583825549343690938539004004504636574794861688716415828584275130130041676474134876499}{1352545526336251861297614318658517447864307032751759129401612172768748969602148961903} a + \frac{50335206477599951197082277228209034112873985483277860376551540897548181976343691439}{1352545526336251861297614318658517447864307032751759129401612172768748969602148961903}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $20$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1679101587664927000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{21}$ (as 21T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 21
The 21 conjugacy class representatives for $C_{21}$
Character table for $C_{21}$ is not computed

Intermediate fields

3.3.3969.2, 7.7.594823321.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $21$ R ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ R ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ $21$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ $21$ ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ R $21$ $21$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{7}$ $21$ $21$ $21$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
7Data not computed
29Data not computed