Normalized defining polynomial
\( x^{21} - 108 x^{19} - 72 x^{18} + 4887 x^{17} + 6516 x^{16} - 117789 x^{15} - 239922 x^{14} + 1562355 x^{13} + 4557264 x^{12} - 9837504 x^{11} - 46059792 x^{10} + 1346012 x^{9} + 217805616 x^{8} + 298243653 x^{7} - 184162654 x^{6} - 943551612 x^{5} - 1211376024 x^{4} - 836177936 x^{3} - 336758688 x^{2} - 74835264 x - 7127168 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3242965296276187008239641241713030829835123165216768=2^{14}\cdot 3^{21}\cdot 29^{19}\cdot 55681^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $283.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 29, 55681$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} - \frac{1}{8} a^{11} - \frac{1}{8} a^{9} + \frac{1}{4} a^{8} - \frac{1}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} - \frac{1}{4} a^{14} + \frac{3}{8} a^{13} + \frac{23}{64} a^{12} - \frac{15}{32} a^{11} + \frac{15}{64} a^{10} + \frac{3}{16} a^{9} - \frac{29}{64} a^{8} - \frac{13}{32} a^{7} - \frac{7}{16} a^{6} + \frac{3}{8} a^{5} + \frac{7}{16} a^{4} - \frac{3}{8} a^{3} - \frac{11}{64} a^{2} + \frac{3}{16} a + \frac{5}{16}$, $\frac{1}{8704} a^{17} + \frac{1}{544} a^{16} - \frac{93}{2176} a^{15} + \frac{303}{1088} a^{14} + \frac{3303}{8704} a^{13} + \frac{841}{2176} a^{12} + \frac{1323}{8704} a^{11} - \frac{81}{4352} a^{10} + \frac{587}{8704} a^{9} + \frac{269}{544} a^{8} + \frac{431}{1088} a^{7} + \frac{177}{544} a^{6} - \frac{213}{2176} a^{5} + \frac{135}{544} a^{4} - \frac{3483}{8704} a^{3} + \frac{57}{4352} a^{2} + \frac{623}{2176} a + \frac{227}{1088}$, $\frac{1}{69632} a^{18} - \frac{1}{34816} a^{17} + \frac{107}{17408} a^{16} + \frac{81}{2176} a^{15} - \frac{31625}{69632} a^{14} - \frac{14989}{34816} a^{13} + \frac{611}{69632} a^{12} - \frac{2725}{8704} a^{11} + \frac{19823}{69632} a^{10} - \frac{9659}{34816} a^{9} + \frac{3123}{8704} a^{8} + \frac{1073}{2176} a^{7} + \frac{3363}{17408} a^{6} - \frac{1077}{8704} a^{5} + \frac{22917}{69632} a^{4} + \frac{3499}{8704} a^{3} - \frac{2529}{8704} a^{2} - \frac{665}{2176} a + \frac{405}{4352}$, $\frac{1}{557056} a^{19} - \frac{1}{139264} a^{18} - \frac{1}{34816} a^{17} + \frac{409}{69632} a^{16} + \frac{7991}{557056} a^{15} - \frac{9729}{69632} a^{14} - \frac{9753}{32768} a^{13} - \frac{107895}{278528} a^{12} - \frac{233345}{557056} a^{11} - \frac{33589}{139264} a^{10} - \frac{58543}{139264} a^{9} + \frac{1999}{34816} a^{8} - \frac{21357}{139264} a^{7} - \frac{3515}{8704} a^{6} + \frac{212949}{557056} a^{5} - \frac{92377}{278528} a^{4} - \frac{1887}{4096} a^{3} - \frac{7977}{34816} a^{2} + \frac{9449}{34816} a - \frac{2981}{17408}$, $\frac{1}{4456448} a^{20} + \frac{1}{2228224} a^{19} + \frac{3}{557056} a^{18} - \frac{3}{557056} a^{17} + \frac{5863}{4456448} a^{16} + \frac{82337}{2228224} a^{15} - \frac{4489}{262144} a^{14} + \frac{301863}{1114112} a^{13} - \frac{1239125}{4456448} a^{12} - \frac{990189}{2228224} a^{11} - \frac{375549}{1114112} a^{10} + \frac{214369}{557056} a^{9} + \frac{184699}{1114112} a^{8} - \frac{236319}{557056} a^{7} - \frac{62891}{4456448} a^{6} - \frac{185133}{1114112} a^{5} + \frac{316199}{1114112} a^{4} - \frac{62139}{139264} a^{3} + \frac{32851}{278528} a^{2} + \frac{11051}{69632} a + \frac{14817}{69632}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13713462377300000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 244944 |
| The 72 conjugacy class representatives for t21n112 are not computed |
| Character table for t21n112 is not computed |
Intermediate fields
| 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{10}$ | $21$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.6 | $x^{14} - 3 x^{12} + 4 x^{11} - 2 x^{10} + 4 x^{9} - 2 x^{8} + 4 x^{6} - 2 x^{5} - 2 x^{4} + 2 x^{2} - 2 x + 3$ | $2$ | $7$ | $14$ | 14T9 | $[2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.14.13.11 | $x^{14} + 3712$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ | |
| 55681 | Data not computed | ||||||