Normalized defining polynomial
\( x^{21} - 7 x^{20} - 23 x^{19} + 222 x^{18} + 211 x^{17} - 3052 x^{16} - 1066 x^{15} + 23585 x^{14} + 4211 x^{13} - 111319 x^{12} - 18090 x^{11} + 327519 x^{10} + 67407 x^{9} - 587331 x^{8} - 157934 x^{7} + 593915 x^{6} + 197792 x^{5} - 276738 x^{4} - 106383 x^{3} + 26935 x^{2} + 9946 x - 113 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3225600451670981203653263815902232576=2^{18}\cdot 7^{14}\cdot 1621^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 1621$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{28} a^{18} + \frac{1}{28} a^{17} + \frac{1}{28} a^{16} + \frac{1}{14} a^{14} + \frac{1}{28} a^{13} - \frac{11}{28} a^{12} - \frac{9}{28} a^{11} + \frac{1}{4} a^{10} - \frac{3}{7} a^{9} - \frac{5}{28} a^{8} + \frac{1}{14} a^{7} + \frac{2}{7} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{28} a^{3} + \frac{3}{14} a^{2} - \frac{3}{28} a + \frac{3}{14}$, $\frac{1}{28} a^{19} - \frac{1}{28} a^{16} + \frac{1}{14} a^{15} - \frac{1}{28} a^{14} + \frac{1}{14} a^{13} - \frac{3}{7} a^{12} + \frac{1}{14} a^{11} + \frac{9}{28} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{3}{14} a^{7} - \frac{1}{28} a^{6} + \frac{3}{14} a^{4} - \frac{1}{4} a^{3} + \frac{5}{28} a^{2} + \frac{9}{28} a + \frac{2}{7}$, $\frac{1}{1331832848343918157599964} a^{20} - \frac{376943255778310051259}{1331832848343918157599964} a^{19} + \frac{1495777668242590596756}{332958212085979539399991} a^{18} - \frac{32058677317974404642299}{1331832848343918157599964} a^{17} + \frac{299935360101044349610879}{1331832848343918157599964} a^{16} + \frac{205516010784980090236519}{1331832848343918157599964} a^{15} + \frac{265824753838460467582331}{1331832848343918157599964} a^{14} + \frac{16566540835920758417319}{95130917738851296971426} a^{13} + \frac{161187415629707912436125}{332958212085979539399991} a^{12} - \frac{83464480979351620554097}{1331832848343918157599964} a^{11} + \frac{94391013724308153167971}{665916424171959078799982} a^{10} + \frac{120730644238664580890435}{332958212085979539399991} a^{9} - \frac{130489017656534853702831}{1331832848343918157599964} a^{8} - \frac{179049994439815099746707}{1331832848343918157599964} a^{7} - \frac{382672081413794973821639}{1331832848343918157599964} a^{6} - \frac{34436123994906019182213}{665916424171959078799982} a^{5} - \frac{605280620775269495598757}{1331832848343918157599964} a^{4} - \frac{55251255248567448115935}{332958212085979539399991} a^{3} - \frac{14336777479172263388551}{665916424171959078799982} a^{2} + \frac{105566995221031529089287}{1331832848343918157599964} a - \frac{16436426948081230751578}{332958212085979539399991}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 387606904916 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7560 |
| The 27 conjugacy class representatives for t21n44 |
| Character table for t21n44 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 7.7.8240282176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 45 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | $21$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | $21$ | $21$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | $21$ | $15{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.12.12.33 | $x^{12} + 6 x^{11} - 4 x^{9} - 2 x^{8} + 8 x^{7} + 8 x^{6} - 4 x^{5} + 8 x^{3} + 8 x^{2} + 8$ | $4$ | $3$ | $12$ | 12T45 | $[4/3, 4/3]_{3}^{6}$ | |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 1621 | Data not computed | ||||||