Normalized defining polynomial
\( x^{21} - x^{20} - 106 x^{19} + 19 x^{18} + 4514 x^{17} + 2212 x^{16} - 98469 x^{15} - 101273 x^{14} + 1161058 x^{13} + 1687220 x^{12} - 7173629 x^{11} - 12696230 x^{10} + 21408857 x^{9} + 41742773 x^{8} - 33331528 x^{7} - 62993456 x^{6} + 29458695 x^{5} + 39416874 x^{4} - 12941586 x^{3} - 5181015 x^{2} - 313502 x + 8771 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(316768269303064912141617448027213301889478849=7^{14}\cdot 43^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $131.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(301=7\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{301}(64,·)$, $\chi_{301}(1,·)$, $\chi_{301}(67,·)$, $\chi_{301}(9,·)$, $\chi_{301}(74,·)$, $\chi_{301}(78,·)$, $\chi_{301}(79,·)$, $\chi_{301}(81,·)$, $\chi_{301}(274,·)$, $\chi_{301}(275,·)$, $\chi_{301}(142,·)$, $\chi_{301}(221,·)$, $\chi_{301}(176,·)$, $\chi_{301}(100,·)$, $\chi_{301}(298,·)$, $\chi_{301}(109,·)$, $\chi_{301}(240,·)$, $\chi_{301}(53,·)$, $\chi_{301}(183,·)$, $\chi_{301}(58,·)$, $\chi_{301}(127,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{7} a^{15} - \frac{2}{7} a^{14} + \frac{3}{7} a^{13} - \frac{1}{7} a^{12} - \frac{3}{7} a^{11} - \frac{3}{7} a^{10} + \frac{3}{7} a^{9} - \frac{2}{7} a^{8} + \frac{1}{7} a^{7} + \frac{1}{7} a^{6} - \frac{2}{7} a^{5} - \frac{3}{7} a^{4} + \frac{1}{7} a^{3}$, $\frac{1}{7} a^{16} - \frac{1}{7} a^{14} - \frac{2}{7} a^{13} + \frac{2}{7} a^{12} - \frac{2}{7} a^{11} - \frac{3}{7} a^{10} - \frac{3}{7} a^{9} - \frac{3}{7} a^{8} + \frac{3}{7} a^{7} + \frac{2}{7} a^{4} + \frac{2}{7} a^{3}$, $\frac{1}{259} a^{17} - \frac{11}{259} a^{16} - \frac{4}{259} a^{15} + \frac{29}{259} a^{14} + \frac{36}{259} a^{13} + \frac{16}{37} a^{12} - \frac{7}{37} a^{11} + \frac{81}{259} a^{10} - \frac{18}{37} a^{9} + \frac{17}{37} a^{8} - \frac{92}{259} a^{7} + \frac{25}{259} a^{6} + \frac{15}{259} a^{5} + \frac{108}{259} a^{4} + \frac{80}{259} a^{3} - \frac{16}{37} a^{2} + \frac{13}{37} a - \frac{1}{37}$, $\frac{1}{259} a^{18} - \frac{2}{37} a^{16} - \frac{15}{259} a^{15} - \frac{15}{259} a^{14} + \frac{27}{259} a^{13} + \frac{110}{259} a^{12} + \frac{97}{259} a^{11} - \frac{86}{259} a^{10} - \frac{46}{259} a^{9} + \frac{107}{259} a^{8} + \frac{123}{259} a^{7} + \frac{31}{259} a^{6} + \frac{2}{37} a^{5} - \frac{64}{259} a^{4} - \frac{46}{259} a^{3} - \frac{15}{37} a^{2} - \frac{6}{37} a - \frac{11}{37}$, $\frac{1}{46361} a^{19} - \frac{89}{46361} a^{18} - \frac{29}{46361} a^{17} - \frac{3007}{46361} a^{16} + \frac{1417}{46361} a^{15} + \frac{9141}{46361} a^{14} - \frac{7902}{46361} a^{13} + \frac{2995}{6623} a^{12} - \frac{11462}{46361} a^{11} + \frac{15865}{46361} a^{10} + \frac{3254}{6623} a^{9} + \frac{18008}{46361} a^{8} + \frac{1122}{6623} a^{7} - \frac{2565}{46361} a^{6} + \frac{981}{46361} a^{5} + \frac{12725}{46361} a^{4} + \frac{11632}{46361} a^{3} + \frac{570}{6623} a^{2} + \frac{1919}{6623} a + \frac{7}{37}$, $\frac{1}{23042888227585618953648125010721868624302924421880832373} a^{20} - \frac{33251770014845524420944201956932268473994011574062}{23042888227585618953648125010721868624302924421880832373} a^{19} + \frac{39489711195406488600649322149067460173276520030209858}{23042888227585618953648125010721868624302924421880832373} a^{18} + \frac{2920191044244242273552278326321919120853209720029363}{3291841175369374136235446430103124089186132060268690339} a^{17} + \frac{1462324448307454713959220337853651764018484996102459784}{23042888227585618953648125010721868624302924421880832373} a^{16} - \frac{65311351185723206702707711065337124961817741742117671}{23042888227585618953648125010721868624302924421880832373} a^{15} - \frac{6038730309545596487092472731760369924943877406089413103}{23042888227585618953648125010721868624302924421880832373} a^{14} - \frac{9027301461535988489149247395722943887396333154720161619}{23042888227585618953648125010721868624302924421880832373} a^{13} - \frac{151487961701744874096738632901937465566824271624540}{12709811487912641452646511313139475247822903707601121} a^{12} + \frac{10587578623926910180659037774221038271722675069548303843}{23042888227585618953648125010721868624302924421880832373} a^{11} + \frac{7507084776165429334709538576724745105612422717758859565}{23042888227585618953648125010721868624302924421880832373} a^{10} - \frac{6692849036358411751219037899495188851583781217266846241}{23042888227585618953648125010721868624302924421880832373} a^{9} + \frac{3294500147680115771587542247477341553791097915890178290}{23042888227585618953648125010721868624302924421880832373} a^{8} + \frac{9166256653150271681695343694506790308300247024628456289}{23042888227585618953648125010721868624302924421880832373} a^{7} + \frac{3211320838488695252280375286966005924438742487191975042}{23042888227585618953648125010721868624302924421880832373} a^{6} + \frac{174174738919848127900153097809194054682725183788762272}{3291841175369374136235446430103124089186132060268690339} a^{5} + \frac{445626710974047500102386411035397938067202394257267643}{3291841175369374136235446430103124089186132060268690339} a^{4} - \frac{840430053564130200933484086304670385260285835895336370}{3291841175369374136235446430103124089186132060268690339} a^{3} + \frac{87459119812086951665085090152074312032650406174994693}{470263025052767733747920918586160584169447437181241477} a^{2} + \frac{181143209651691821432115033102209095234773497633359129}{470263025052767733747920918586160584169447437181241477} a + \frac{903870911839728720684555762487370644571072766855598}{2627167737724959406412966025621008850108644900453863}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2941850439885216.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| 3.3.90601.2, 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | R | $21$ | $21$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | $21$ | $21$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{21}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | R | $21$ | $21$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43 | Data not computed | ||||||