Normalized defining polynomial
\( x^{21} - 3 x^{20} - 85 x^{19} + 342 x^{18} + 2160 x^{17} - 10377 x^{16} - 23312 x^{15} + 137697 x^{14} + 119845 x^{13} - 949109 x^{12} - 298102 x^{11} + 3636823 x^{10} + 323164 x^{9} - 7736312 x^{8} - 41098 x^{7} + 8529803 x^{6} - 336531 x^{5} - 4148808 x^{4} + 355302 x^{3} + 499880 x^{2} - 70834 x + 2329 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(312995817795780583119591509136121488474112=2^{21}\cdot 71^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $94.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} + \frac{1}{5} a^{15} + \frac{1}{5} a^{14} + \frac{1}{5} a^{13} + \frac{2}{5} a^{12} - \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{17} + \frac{1}{5} a^{13} + \frac{1}{5} a^{12} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} - \frac{2}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{14} + \frac{1}{5} a^{13} + \frac{1}{5} a^{12} - \frac{2}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{85} a^{19} + \frac{7}{85} a^{18} - \frac{7}{85} a^{17} + \frac{1}{17} a^{16} - \frac{39}{85} a^{15} - \frac{1}{5} a^{14} + \frac{6}{85} a^{13} + \frac{23}{85} a^{12} - \frac{33}{85} a^{11} - \frac{26}{85} a^{10} - \frac{38}{85} a^{9} + \frac{37}{85} a^{8} + \frac{9}{85} a^{7} - \frac{8}{85} a^{6} + \frac{2}{5} a^{5} - \frac{28}{85} a^{4} + \frac{27}{85} a^{3} - \frac{31}{85} a^{2} + \frac{2}{17} a - \frac{1}{5}$, $\frac{1}{926479247647264622062073491648252207718246953433351165} a^{20} + \frac{10701497646182756164447485350691004131630140233349}{6762622245600471693883748114220819034439758784185045} a^{19} - \frac{89427166935351491536224473866831598626808237224427336}{926479247647264622062073491648252207718246953433351165} a^{18} + \frac{4139839582499636108453680423087333873049451263363358}{54498779273368507180121970096956012218720409025491245} a^{17} - \frac{30156469596133572419285882639912572466889683580847169}{926479247647264622062073491648252207718246953433351165} a^{16} - \frac{77977409183078487981096275428381162155344325318866611}{926479247647264622062073491648252207718246953433351165} a^{15} + \frac{157764581842157362079967006667128364065088986794515568}{926479247647264622062073491648252207718246953433351165} a^{14} + \frac{108162481275028570390935878686557046538334355849436896}{926479247647264622062073491648252207718246953433351165} a^{13} - \frac{217312108837233854487190827903329199355646854447496008}{926479247647264622062073491648252207718246953433351165} a^{12} + \frac{438537306009326614251883056372362578776746789882649081}{926479247647264622062073491648252207718246953433351165} a^{11} + \frac{353447884924246315391096339882031771755467528217011112}{926479247647264622062073491648252207718246953433351165} a^{10} + \frac{323746481390155566877970395301009086383133197129858154}{926479247647264622062073491648252207718246953433351165} a^{9} - \frac{445238425840049914929480298041321072968632170310200842}{926479247647264622062073491648252207718246953433351165} a^{8} + \frac{378639627719512862568229526313413980485165145062878906}{926479247647264622062073491648252207718246953433351165} a^{7} + \frac{151164244083988028100275196672631023570542455557461602}{926479247647264622062073491648252207718246953433351165} a^{6} + \frac{79902180191732678941051252572625878075988270401754594}{926479247647264622062073491648252207718246953433351165} a^{5} - \frac{10985286479037736928467561543126127885966468503665028}{926479247647264622062073491648252207718246953433351165} a^{4} - \frac{270872581153024878855628436197380648980889252583041959}{926479247647264622062073491648252207718246953433351165} a^{3} + \frac{2420871751243025892511257096142202216870174976679942}{54498779273368507180121970096956012218720409025491245} a^{2} - \frac{6255329844004264639149164353948173465409048490190673}{185295849529452924412414698329650441543649390686670233} a - \frac{60814490817075472534754745725996967979267016577416}{397801308564733629051985183189459943202338752010885}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 609186511830000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_7\times S_3$ (as 21T6):
| A solvable group of order 42 |
| The 21 conjugacy class representatives for $C_7\times S_3$ |
| Character table for $C_7\times S_3$ is not computed |
Intermediate fields
| 3.3.568.1, 7.7.128100283921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{7}$ | $21$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{7}$ | $21$ | $21$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | $21$ | $21$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.21.6 | $x^{14} + 4 x^{11} - 3 x^{10} + 4 x^{9} + 2 x^{8} + 2 x^{7} - 3 x^{6} + 2 x^{5} - 2 x^{4} - 2 x^{3} - x^{2} - 2 x + 1$ | $2$ | $7$ | $21$ | $C_{14}$ | $[3]^{7}$ | |
| $71$ | 71.7.6.1 | $x^{7} - 71$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 71.14.13.1 | $x^{14} - 71$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |