Normalized defining polynomial
\( x^{21} - 2 x^{20} - 322 x^{19} + 664 x^{18} + 35703 x^{17} - 43578 x^{16} - 1932617 x^{15} + 583246 x^{14} + 56351019 x^{13} + 25506215 x^{12} - 902360226 x^{11} - 919804797 x^{10} + 7604045846 x^{9} + 10809094658 x^{8} - 29542123459 x^{7} - 49423979231 x^{6} + 38245288476 x^{5} + 64981505313 x^{4} - 17641871062 x^{3} - 20539678739 x^{2} - 3015176110 x + 43025225 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3096148947286301526552289503870245765743349723329=31^{14}\cdot 577^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $203.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5} a^{15} - \frac{2}{5} a^{14} + \frac{2}{5} a^{13} - \frac{2}{5} a^{12} - \frac{2}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a$, $\frac{1}{5} a^{16} - \frac{2}{5} a^{14} + \frac{2}{5} a^{13} - \frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{455} a^{17} + \frac{2}{35} a^{16} + \frac{8}{91} a^{15} - \frac{4}{455} a^{14} + \frac{8}{91} a^{13} + \frac{79}{455} a^{12} + \frac{4}{13} a^{11} - \frac{5}{91} a^{10} + \frac{134}{455} a^{9} - \frac{44}{91} a^{8} + \frac{27}{65} a^{7} - \frac{142}{455} a^{6} - \frac{144}{455} a^{5} + \frac{211}{455} a^{4} + \frac{1}{35} a^{3} - \frac{9}{455} a^{2} - \frac{92}{455} a - \frac{38}{91}$, $\frac{1}{455} a^{18} + \frac{1}{455} a^{16} - \frac{43}{455} a^{15} + \frac{53}{455} a^{14} + \frac{8}{91} a^{13} - \frac{3}{455} a^{12} + \frac{66}{455} a^{11} + \frac{21}{65} a^{10} + \frac{118}{455} a^{9} - \frac{6}{455} a^{8} + \frac{131}{455} a^{7} + \frac{18}{91} a^{6} + \frac{6}{65} a^{5} - \frac{3}{7} a^{4} + \frac{108}{455} a^{3} + \frac{51}{455} a^{2} - \frac{73}{455} a - \frac{1}{7}$, $\frac{1}{5915} a^{19} + \frac{1}{5915} a^{18} - \frac{6}{5915} a^{17} - \frac{19}{845} a^{16} - \frac{88}{5915} a^{15} - \frac{176}{1183} a^{14} - \frac{1972}{5915} a^{13} - \frac{14}{169} a^{12} + \frac{81}{455} a^{11} + \frac{2806}{5915} a^{10} - \frac{27}{845} a^{9} - \frac{1611}{5915} a^{8} + \frac{809}{5915} a^{7} - \frac{2514}{5915} a^{6} + \frac{535}{1183} a^{5} - \frac{2656}{5915} a^{4} - \frac{1661}{5915} a^{3} + \frac{2043}{5915} a^{2} - \frac{586}{5915} a - \frac{202}{1183}$, $\frac{1}{844817547370913925246080673738269517480249167233151569226202766241659681643308531523615640338817115} a^{20} - \frac{26212627416585013480462112376812362813591593586865306644376957498082011260677722032713583225058}{844817547370913925246080673738269517480249167233151569226202766241659681643308531523615640338817115} a^{19} + \frac{127357019347852372687170876760939467549556696284364181111886692918332674244626177081095531198046}{844817547370913925246080673738269517480249167233151569226202766241659681643308531523615640338817115} a^{18} - \frac{342590935747247178034838285579188283631724580525201514287037457502785842850896110698131562968577}{844817547370913925246080673738269517480249167233151569226202766241659681643308531523615640338817115} a^{17} - \frac{1635232371729456666375959129686251826712504652015734284814272170217430847633420695800697991880195}{24137644210597540721316590678236271928007119063804330549320079035475990904094529472103304009680489} a^{16} + \frac{77646549107093558711033801017562631360460162571335158848931315162969994079046322319427978076805047}{844817547370913925246080673738269517480249167233151569226202766241659681643308531523615640338817115} a^{15} - \frac{330207846331427810779807596390139457288312841457976093380430062067205122516505114228775844347302979}{844817547370913925246080673738269517480249167233151569226202766241659681643308531523615640338817115} a^{14} + \frac{12616089027548989918066407053959617054874489790273891252299214478163488009904012885326152884228600}{168963509474182785049216134747653903496049833446630313845240553248331936328661706304723128067763423} a^{13} - \frac{208215773034899269516658449405965492199338925034578085726905438223142878649171594228031039651270186}{844817547370913925246080673738269517480249167233151569226202766241659681643308531523615640338817115} a^{12} - \frac{30737194193073779824414489878047863544895894285244888965841465398170664110671984867722204643419364}{844817547370913925246080673738269517480249167233151569226202766241659681643308531523615640338817115} a^{11} + \frac{149702852219709915097425770125593036105283259584886655718939215270536575070462637073990498890832283}{844817547370913925246080673738269517480249167233151569226202766241659681643308531523615640338817115} a^{10} + \frac{11837291728546523129177253485731934497496601424025868239077511450510997748039117724320544101921970}{24137644210597540721316590678236271928007119063804330549320079035475990904094529472103304009680489} a^{9} - \frac{103797795620197242690618180842754615855554198817488611784532194464694262715464645617429739659393019}{844817547370913925246080673738269517480249167233151569226202766241659681643308531523615640338817115} a^{8} - \frac{123952250337832134740560389516388452980809040085362390238641798510673273872645411667489646138472928}{844817547370913925246080673738269517480249167233151569226202766241659681643308531523615640338817115} a^{7} + \frac{74648685304449146921666688904736608205141066851465612566551866550389942073095828322425971119845559}{844817547370913925246080673738269517480249167233151569226202766241659681643308531523615640338817115} a^{6} + \frac{17977674613404689358552509353781754469372100314056976740654210231568463574446106613718902228889599}{168963509474182785049216134747653903496049833446630313845240553248331936328661706304723128067763423} a^{5} + \frac{20489316574877737444289929974812419280286343340098754534987989691331964485537619297478640734013256}{844817547370913925246080673738269517480249167233151569226202766241659681643308531523615640338817115} a^{4} - \frac{165651296254613030159677656156528807101908481297752957000188746834722477569101433637606564690819368}{844817547370913925246080673738269517480249167233151569226202766241659681643308531523615640338817115} a^{3} + \frac{32833402253614168472477672366570873759840445047776039640308324118952641271089157227449883933022416}{844817547370913925246080673738269517480249167233151569226202766241659681643308531523615640338817115} a^{2} - \frac{63580143720726825937421459178417655631007151099245394696738255576490972743492569397855492252246701}{168963509474182785049216134747653903496049833446630313845240553248331936328661706304723128067763423} a - \frac{29592352686146011523040431512126224491131255134970724827842906605597409322460178316895699182044742}{168963509474182785049216134747653903496049833446630313845240553248331936328661706304723128067763423}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 238900599465000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 42 |
| The 12 conjugacy class representatives for $D_{21}$ |
| Character table for $D_{21}$ |
Intermediate fields
| 3.3.554497.1, 7.7.192100033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 31 | Data not computed | ||||||
| 577 | Data not computed | ||||||