Normalized defining polynomial
\( x^{21} - x^{20} - 100 x^{19} + 67 x^{18} + 3859 x^{17} - 1091 x^{16} - 75232 x^{15} - 6133 x^{14} + 794170 x^{13} + 286211 x^{12} - 4477546 x^{11} - 2182156 x^{10} + 12688535 x^{9} + 4651760 x^{8} - 18320520 x^{7} - 1508898 x^{6} + 11921203 x^{5} - 2662713 x^{4} - 1452380 x^{3} + 378406 x^{2} - 6036 x - 1759 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(30594904784676758060124060477990514093520773201=211^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $163.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(211\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{211}(1,·)$, $\chi_{211}(43,·)$, $\chi_{211}(196,·)$, $\chi_{211}(199,·)$, $\chi_{211}(73,·)$, $\chi_{211}(14,·)$, $\chi_{211}(144,·)$, $\chi_{211}(148,·)$, $\chi_{211}(161,·)$, $\chi_{211}(34,·)$, $\chi_{211}(101,·)$, $\chi_{211}(171,·)$, $\chi_{211}(173,·)$, $\chi_{211}(178,·)$, $\chi_{211}(179,·)$, $\chi_{211}(180,·)$, $\chi_{211}(117,·)$, $\chi_{211}(54,·)$, $\chi_{211}(185,·)$, $\chi_{211}(58,·)$, $\chi_{211}(123,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{23} a^{15} + \frac{7}{23} a^{14} - \frac{1}{23} a^{13} + \frac{4}{23} a^{12} - \frac{4}{23} a^{11} + \frac{4}{23} a^{10} + \frac{1}{23} a^{9} - \frac{4}{23} a^{8} - \frac{3}{23} a^{7} + \frac{7}{23} a^{6} - \frac{4}{23} a^{5} - \frac{1}{23} a^{4} - \frac{4}{23} a - \frac{3}{23}$, $\frac{1}{23} a^{16} - \frac{4}{23} a^{14} + \frac{11}{23} a^{13} - \frac{9}{23} a^{12} + \frac{9}{23} a^{11} - \frac{4}{23} a^{10} - \frac{11}{23} a^{9} + \frac{2}{23} a^{8} + \frac{5}{23} a^{7} - \frac{7}{23} a^{6} + \frac{4}{23} a^{5} + \frac{7}{23} a^{4} - \frac{4}{23} a^{2} + \frac{2}{23} a - \frac{2}{23}$, $\frac{1}{23} a^{17} - \frac{7}{23} a^{14} + \frac{10}{23} a^{13} + \frac{2}{23} a^{12} + \frac{3}{23} a^{11} + \frac{5}{23} a^{10} + \frac{6}{23} a^{9} - \frac{11}{23} a^{8} + \frac{4}{23} a^{7} + \frac{9}{23} a^{6} - \frac{9}{23} a^{5} - \frac{4}{23} a^{4} - \frac{4}{23} a^{3} + \frac{2}{23} a^{2} + \frac{5}{23} a + \frac{11}{23}$, $\frac{1}{174731} a^{18} + \frac{2471}{174731} a^{17} - \frac{1859}{174731} a^{16} + \frac{1057}{174731} a^{15} + \frac{21057}{174731} a^{14} - \frac{55520}{174731} a^{13} + \frac{7279}{174731} a^{12} - \frac{36477}{174731} a^{11} + \frac{40153}{174731} a^{10} + \frac{66895}{174731} a^{9} + \frac{40887}{174731} a^{8} + \frac{17554}{174731} a^{7} + \frac{36458}{174731} a^{6} + \frac{67955}{174731} a^{5} - \frac{32636}{174731} a^{4} - \frac{68877}{174731} a^{3} - \frac{39896}{174731} a^{2} + \frac{37006}{174731} a + \frac{61724}{174731}$, $\frac{1}{174731} a^{19} + \frac{288}{174731} a^{17} - \frac{1539}{174731} a^{16} - \frac{3}{2461} a^{15} + \frac{1550}{7597} a^{14} - \frac{72994}{174731} a^{13} - \frac{33190}{174731} a^{12} - \frac{16764}{174731} a^{11} - \frac{25512}{174731} a^{10} + \frac{23674}{174731} a^{9} + \frac{79056}{174731} a^{8} - \frac{36576}{174731} a^{7} + \frac{57866}{174731} a^{6} - \frac{55741}{174731} a^{5} + \frac{61673}{174731} a^{4} - \frac{2435}{174731} a^{3} - \frac{80202}{174731} a^{2} - \frac{18580}{174731} a - \frac{40617}{174731}$, $\frac{1}{76279165896974106214518174122144111593126557521} a^{20} + \frac{120639252783435482010763258431689309070973}{76279165896974106214518174122144111593126557521} a^{19} - \frac{13162162658013302610758620730851510134101}{76279165896974106214518174122144111593126557521} a^{18} - \frac{560340345359049602221542488518218237059681357}{76279165896974106214518174122144111593126557521} a^{17} - \frac{824303666062581331599897659010830304460069653}{76279165896974106214518174122144111593126557521} a^{16} - \frac{856771311039027405264335652551250767889400946}{76279165896974106214518174122144111593126557521} a^{15} - \frac{25220854628456945072304432385139811837775073228}{76279165896974106214518174122144111593126557521} a^{14} - \frac{19388058659488023455836172169895605552546303585}{76279165896974106214518174122144111593126557521} a^{13} + \frac{8711007399560667179758381928646387361257861088}{76279165896974106214518174122144111593126557521} a^{12} + \frac{2077750150825155234430514698500878420901681566}{76279165896974106214518174122144111593126557521} a^{11} + \frac{22422981721374619200945854918490640807759464687}{76279165896974106214518174122144111593126557521} a^{10} - \frac{889937688440745513284258676346990876527175032}{76279165896974106214518174122144111593126557521} a^{9} + \frac{13340601067712906893971534256379319162203478587}{76279165896974106214518174122144111593126557521} a^{8} + \frac{839777568542428201172473801672502768583946232}{3316485473781482878892094527049743982309850327} a^{7} + \frac{14244565740758928677578555581101394037316323621}{76279165896974106214518174122144111593126557521} a^{6} + \frac{6144969335749890489328683490970357844578827053}{76279165896974106214518174122144111593126557521} a^{5} - \frac{20089847717542981465373679660059290172095420456}{76279165896974106214518174122144111593126557521} a^{4} - \frac{16836969185469647782066742360009561833632917702}{76279165896974106214518174122144111593126557521} a^{3} - \frac{20052154970494914671393187856738661405202448385}{76279165896974106214518174122144111593126557521} a^{2} + \frac{22000617327927959924617881083842439901566056694}{76279165896974106214518174122144111593126557521} a + \frac{9896406234151521391612600833464484403057770129}{76279165896974106214518174122144111593126557521}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 66095963290529660 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| 3.3.44521.1, 7.7.88245939632761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{21}$ | $21$ | $21$ | $21$ | $21$ | $21$ | $21$ | $21$ | $21$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 211 | Data not computed | ||||||