Normalized defining polynomial
\( x^{21} - x^{20} - 200 x^{19} + 67 x^{18} + 16134 x^{17} + 828 x^{16} - 697221 x^{15} - 222713 x^{14} + 17859943 x^{13} + 9863681 x^{12} - 280861686 x^{11} - 223777460 x^{10} + 2686381285 x^{9} + 2906746078 x^{8} - 14625774577 x^{7} - 21119020890 x^{6} + 36814363818 x^{5} + 75239240850 x^{4} - 8634241360 x^{3} - 86032090549 x^{2} - 56191978934 x - 10850554247 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(30594398325772002447442992111668517593745691297844401=421^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $315.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $421$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(421\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{421}(1,·)$, $\chi_{421}(385,·)$, $\chi_{421}(75,·)$, $\chi_{421}(237,·)$, $\chi_{421}(400,·)$, $\chi_{421}(20,·)$, $\chi_{421}(149,·)$, $\chi_{421}(152,·)$, $\chi_{421}(335,·)$, $\chi_{421}(93,·)$, $\chi_{421}(286,·)$, $\chi_{421}(33,·)$, $\chi_{421}(229,·)$, $\chi_{421}(109,·)$, $\chi_{421}(239,·)$, $\chi_{421}(176,·)$, $\chi_{421}(370,·)$, $\chi_{421}(243,·)$, $\chi_{421}(309,·)$, $\chi_{421}(247,·)$, $\chi_{421}(122,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12} - \frac{3}{13} a^{11} - \frac{4}{13} a^{10} - \frac{1}{13} a^{9} + \frac{3}{13} a^{8} + \frac{4}{13} a^{7} + \frac{1}{13} a^{6} - \frac{3}{13} a^{5} - \frac{4}{13} a^{4} - \frac{1}{13} a^{3} + \frac{3}{13} a^{2} + \frac{4}{13} a$, $\frac{1}{13} a^{13} - \frac{1}{13} a$, $\frac{1}{377} a^{14} + \frac{6}{377} a^{13} + \frac{3}{377} a^{12} - \frac{22}{377} a^{11} + \frac{92}{377} a^{10} + \frac{10}{377} a^{9} - \frac{30}{377} a^{8} - \frac{118}{377} a^{7} + \frac{172}{377} a^{6} - \frac{48}{377} a^{5} + \frac{144}{377} a^{4} - \frac{1}{13} a^{3} + \frac{86}{377} a^{2} + \frac{110}{377} a$, $\frac{1}{377} a^{15} - \frac{4}{377} a^{13} - \frac{11}{377} a^{12} + \frac{137}{377} a^{11} + \frac{96}{377} a^{10} - \frac{119}{377} a^{9} + \frac{149}{377} a^{8} - \frac{135}{377} a^{7} + \frac{80}{377} a^{6} - \frac{32}{377} a^{5} + \frac{122}{377} a^{4} - \frac{146}{377} a^{3} + \frac{2}{13} a^{2} + \frac{181}{377} a$, $\frac{1}{25259} a^{16} + \frac{3}{25259} a^{15} + \frac{16}{25259} a^{14} - \frac{164}{25259} a^{13} + \frac{193}{25259} a^{12} + \frac{9405}{25259} a^{11} - \frac{4516}{25259} a^{10} - \frac{7954}{25259} a^{9} - \frac{2463}{25259} a^{8} - \frac{5208}{25259} a^{7} + \frac{12348}{25259} a^{6} - \frac{4037}{25259} a^{5} + \frac{2230}{25259} a^{4} + \frac{8813}{25259} a^{3} - \frac{5755}{25259} a^{2} + \frac{762}{1943} a - \frac{8}{67}$, $\frac{1}{25259} a^{17} + \frac{7}{25259} a^{15} - \frac{11}{25259} a^{14} - \frac{4}{1943} a^{13} - \frac{22}{1943} a^{12} - \frac{616}{1943} a^{11} + \frac{956}{1943} a^{10} + \frac{605}{1943} a^{9} - \frac{595}{1943} a^{8} - \frac{719}{1943} a^{7} + \frac{695}{1943} a^{6} + \frac{8579}{25259} a^{5} - \frac{450}{1943} a^{4} - \frac{3049}{25259} a^{3} - \frac{343}{871} a^{2} + \frac{229}{1943} a + \frac{24}{67}$, $\frac{1}{25259} a^{18} - \frac{32}{25259} a^{15} - \frac{30}{25259} a^{14} - \frac{277}{25259} a^{13} + \frac{758}{25259} a^{12} - \frac{9723}{25259} a^{11} - \frac{12314}{25259} a^{10} - \frac{10950}{25259} a^{9} + \frac{7760}{25259} a^{8} - \frac{7238}{25259} a^{7} + \frac{5424}{25259} a^{6} + \frac{12091}{25259} a^{5} + \frac{12295}{25259} a^{4} - \frac{9462}{25259} a^{3} + \frac{8154}{25259} a^{2} - \frac{4751}{25259} a - \frac{11}{67}$, $\frac{1}{328367} a^{19} - \frac{2}{328367} a^{18} - \frac{4}{328367} a^{17} - \frac{5}{328367} a^{16} - \frac{315}{328367} a^{15} - \frac{9}{328367} a^{14} + \frac{10693}{328367} a^{13} + \frac{10392}{328367} a^{12} - \frac{18384}{328367} a^{11} + \frac{35262}{328367} a^{10} + \frac{19014}{328367} a^{9} + \frac{51092}{328367} a^{8} + \frac{99716}{328367} a^{7} - \frac{121725}{328367} a^{6} - \frac{63412}{328367} a^{5} - \frac{34192}{328367} a^{4} + \frac{79441}{328367} a^{3} + \frac{79285}{328367} a^{2} + \frac{8917}{25259} a - \frac{12}{67}$, $\frac{1}{25405742808078707299254621753686268524672856939997385174054198189} a^{20} + \frac{529956010785278785914550276570700183345690432342386202756}{1954287908313746715327278596437405271128681303076721936465707553} a^{19} - \frac{275027467013782674765160274005171279809516271843406959232204}{25405742808078707299254621753686268524672856939997385174054198189} a^{18} + \frac{165121444280260628685392212450686006548463073986902653135}{1954287908313746715327278596437405271128681303076721936465707553} a^{17} - \frac{338695077466345309949933362607810417471266628459519758708}{29168476243488756945183262633394108524308676165324208006950859} a^{16} + \frac{6466901030270047329344727401230076111877238730630459507654224}{25405742808078707299254621753686268524672856939997385174054198189} a^{15} - \frac{8034577425728579419285544099347516959294787509064533810658507}{25405742808078707299254621753686268524672856939997385174054198189} a^{14} - \frac{975953544248814269384781472029022530670873951233314083774148483}{25405742808078707299254621753686268524672856939997385174054198189} a^{13} + \frac{71376775078301282949809539799930184890002677118537292822273578}{25405742808078707299254621753686268524672856939997385174054198189} a^{12} + \frac{8703530380715382245239008859395201066439193410063169672773426185}{25405742808078707299254621753686268524672856939997385174054198189} a^{11} + \frac{4814590223457565386889746397856525590764718825233834563746488044}{25405742808078707299254621753686268524672856939997385174054198189} a^{10} - \frac{561453641419543699758397833905925939700901025502522991553688516}{25405742808078707299254621753686268524672856939997385174054198189} a^{9} + \frac{12211614774035065370797540987424562746718117267262104419245931153}{25405742808078707299254621753686268524672856939997385174054198189} a^{8} - \frac{8220414445124547602608625992133134866904835253760085934266522323}{25405742808078707299254621753686268524672856939997385174054198189} a^{7} - \frac{10961467574216897215811972934242118501141922529464795595790485603}{25405742808078707299254621753686268524672856939997385174054198189} a^{6} + \frac{9394785317150563392432758648197764712853750681370976800967494618}{25405742808078707299254621753686268524672856939997385174054198189} a^{5} + \frac{1673284702949620266632973028512842799624656200189902447126618391}{25405742808078707299254621753686268524672856939997385174054198189} a^{4} - \frac{2292200347195351914206537757356105514611953695595469539503316284}{25405742808078707299254621753686268524672856939997385174054198189} a^{3} + \frac{947402093940127231422059341765664067111010112613836090463901751}{25405742808078707299254621753686268524672856939997385174054198189} a^{2} - \frac{27682414234515431927422470757750571990280217614209312240038731}{67389238217715403976802710221979492107885562175059377119507157} a - \frac{57703116563021806334001086236614719527851350618180749370474}{178751295007202663068442202180316955193330403647372353102141}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 262575512314938100000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| 3.3.177241.1, 7.7.5567914722008521.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{21}$ | $21$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{21}$ | $21$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | $21$ | $21$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 421 | Data not computed | ||||||