Normalized defining polynomial
\( x^{21} - 6 x^{20} - 425 x^{19} + 2400 x^{18} + 69760 x^{17} - 383906 x^{16} - 5678359 x^{15} + 32549363 x^{14} + 242490830 x^{13} - 1574665471 x^{12} - 5028143440 x^{11} + 42947394714 x^{10} + 27191483112 x^{9} - 608108237017 x^{8} + 583670547334 x^{7} + 3582484380872 x^{6} - 7571481459052 x^{5} - 3351786304800 x^{4} + 20579453735560 x^{3} - 15898638897888 x^{2} + 232447943664 x + 2390932565712 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3048256034532419815836967567579318642484226146383293989273856=2^{8}\cdot 3^{12}\cdot 313^{12}\cdot 2377^{2}\cdot 66970417^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $758.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 313, 2377, 66970417$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{12} a^{14} - \frac{1}{4} a^{12} + \frac{1}{12} a^{11} - \frac{1}{4} a^{10} + \frac{1}{6} a^{9} + \frac{1}{6} a^{8} + \frac{5}{12} a^{7} - \frac{1}{6} a^{6} + \frac{5}{12} a^{5} - \frac{1}{12} a^{4} - \frac{1}{12} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{15} - \frac{1}{6} a^{12} - \frac{1}{4} a^{11} - \frac{1}{12} a^{10} + \frac{1}{6} a^{9} + \frac{5}{12} a^{8} + \frac{1}{3} a^{7} + \frac{1}{6} a^{6} - \frac{1}{3} a^{5} - \frac{1}{12} a^{4} - \frac{5}{12} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{16} + \frac{1}{12} a^{13} - \frac{1}{12} a^{11} - \frac{1}{12} a^{10} - \frac{1}{12} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{5}{12} a^{6} + \frac{1}{6} a^{5} - \frac{5}{12} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{24} a^{17} - \frac{1}{24} a^{15} + \frac{1}{6} a^{12} - \frac{5}{24} a^{11} + \frac{1}{8} a^{10} + \frac{1}{24} a^{8} + \frac{1}{3} a^{7} - \frac{5}{12} a^{6} - \frac{1}{4} a^{5} - \frac{7}{24} a^{4} + \frac{1}{4} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{72} a^{18} - \frac{1}{72} a^{16} + \frac{1}{36} a^{15} - \frac{1}{36} a^{13} - \frac{1}{24} a^{12} + \frac{1}{8} a^{11} + \frac{2}{9} a^{10} + \frac{5}{72} a^{9} - \frac{5}{12} a^{8} + \frac{5}{36} a^{7} + \frac{1}{18} a^{6} + \frac{5}{24} a^{5} + \frac{2}{9} a^{4} - \frac{5}{18} a^{3} - \frac{1}{2} a$, $\frac{1}{144} a^{19} - \frac{1}{144} a^{17} + \frac{1}{72} a^{16} - \frac{1}{72} a^{14} - \frac{1}{48} a^{13} - \frac{3}{16} a^{12} - \frac{5}{36} a^{11} + \frac{5}{144} a^{10} - \frac{5}{24} a^{9} - \frac{31}{72} a^{8} - \frac{17}{36} a^{7} + \frac{5}{48} a^{6} + \frac{13}{36} a^{5} - \frac{7}{18} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{441403341295887563158883276829780306297670843015752823774148368778310077095905291737682600078075076053261848965344} a^{20} + \frac{1513123457088896028129503637563299441849375394310624769883794421825761503111428756322265436184815778710144977}{9195902943664324232476734933953756381201475896161517161961424349548126606164693577868387501626564084442955186778} a^{19} - \frac{164105454307467351310420449493892111653758051017433908294035901545762142037284959406773795908105043747781177735}{441403341295887563158883276829780306297670843015752823774148368778310077095905291737682600078075076053261848965344} a^{18} + \frac{1197165728041739198045302740344524585405108281897678671534320764546835932266089573780016130998820037054983551893}{220701670647943781579441638414890153148835421507876411887074184389155038547952645868841300039037538026630924482672} a^{17} + \frac{984868531494745452749114395026928656008777946706728727064519868354262239304425898145995831502619803786139358103}{220701670647943781579441638414890153148835421507876411887074184389155038547952645868841300039037538026630924482672} a^{16} - \frac{5166428250433784756784828255185045613415282220049334141028767062670761093212484884853205360163950150097424692243}{220701670647943781579441638414890153148835421507876411887074184389155038547952645868841300039037538026630924482672} a^{15} - \frac{353055974269961041316135448406052186871656052103512849145975608045616865516685195613824531894535270807464958591}{49044815699543062573209252981086700699741204779528091530460929864256675232878365748631400008675008450362427662816} a^{14} + \frac{28857789440298238696278616121110405381471357657147193952887404758802432421979401760000011072105961207266664337517}{441403341295887563158883276829780306297670843015752823774148368778310077095905291737682600078075076053261848965344} a^{13} + \frac{40488565327626722004628481279298269264625918234685737565104733415496521699846854167754308607711460504469994356935}{220701670647943781579441638414890153148835421507876411887074184389155038547952645868841300039037538026630924482672} a^{12} - \frac{43576906672798575387115618916552002953549707927568314032989170542977064891027632697038890209772784426100152481021}{441403341295887563158883276829780306297670843015752823774148368778310077095905291737682600078075076053261848965344} a^{11} + \frac{41342994832059079019596861682216637076606129837132059544062017123130839957636598058658770181690917344194753378605}{220701670647943781579441638414890153148835421507876411887074184389155038547952645868841300039037538026630924482672} a^{10} - \frac{20435628629996830143788113369243287058559855954830236512266304267291850391915419972698979521052258125959419983095}{110350835323971890789720819207445076574417710753938205943537092194577519273976322934420650019518769013315462241336} a^{9} - \frac{9424861609722110977570686347125272724077376759664013245352743647808855873249780376879823042910166104656266947687}{27587708830992972697430204801861269143604427688484551485884273048644379818494080733605162504879692253328865560334} a^{8} + \frac{38787939609133454987113647098295550196470070862310699069563064698753757516773953782868080234610307908337692869031}{441403341295887563158883276829780306297670843015752823774148368778310077095905291737682600078075076053261848965344} a^{7} - \frac{378720194838452060369977576662185704254191703402149618464695432319955009009632948340284629372892473378180986091}{6130601962442882821651156622635837587467650597441011441307616233032084404109795718578925001084376056295303457852} a^{6} + \frac{74495551306122971337635820904227879175339302470779504372292755313112304016312270659128378540026591681488781022983}{220701670647943781579441638414890153148835421507876411887074184389155038547952645868841300039037538026630924482672} a^{5} + \frac{38102161077840922601456916659174177236852870964839876301504440735695873108715806164372414341970705572904714346761}{110350835323971890789720819207445076574417710753938205943537092194577519273976322934420650019518769013315462241336} a^{4} + \frac{1896088723211924928519806555549010019063429064567627570253167459966819821779419615349576824998017843744503235407}{110350835323971890789720819207445076574417710753938205943537092194577519273976322934420650019518769013315462241336} a^{3} + \frac{430483326328767501214859731463557353996576411017221384481793877152980314169975219241715692945351317109140368397}{1532650490610720705412789155658959396866912649360252860326904058258021101027448929644731250271094014073825864463} a^{2} - \frac{1209466947353441964418517404309120596610528093513533641892530565840137626328326443717500783592160506030745261741}{6130601962442882821651156622635837587467650597441011441307616233032084404109795718578925001084376056295303457852} a - \frac{864079330068397712095238777300014380827443204487489531488879892633563518364028586463883076700160548728954965305}{3065300981221441410825578311317918793733825298720505720653808116516042202054897859289462500542188028147651728926}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1473791890510000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2939328 |
| The 99 conjugacy class representatives for t21n127 are not computed |
| Character table for t21n127 is not computed |
Intermediate fields
| 7.7.9597924961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{3}$ | $21$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.3.3.2 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 3.9.9.2 | $x^{9} + 18 x^{3} + 27 x + 27$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $[3/2, 3/2]_{2}^{3}$ | |
| 313 | Data not computed | ||||||
| 2377 | Data not computed | ||||||
| 66970417 | Data not computed | ||||||