Normalized defining polynomial
\( x^{21} - 7 x^{20} - 112 x^{19} + 917 x^{18} + 4501 x^{17} - 49049 x^{16} - 58303 x^{15} + 1363504 x^{14} - 1028629 x^{13} - 20451844 x^{12} + 43800414 x^{11} + 146916245 x^{10} - 561540210 x^{9} - 174494054 x^{8} + 2966333481 x^{7} - 3053607823 x^{6} - 4087297767 x^{5} + 9329430684 x^{4} - 3704545313 x^{3} - 2362982118 x^{2} + 1114112720 x + 364464491 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(298647619353990167618744853614623738567035977728=2^{18}\cdot 7^{29}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $182.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{14} - \frac{1}{2}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{14} + \frac{1}{8} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{3}{8} a^{7} + \frac{3}{8} a^{6} - \frac{1}{2} a^{5} - \frac{3}{8} a^{4} - \frac{3}{8} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a + \frac{3}{8}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{14} + \frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{3}{8} a^{6} - \frac{3}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} - \frac{3}{8} a - \frac{1}{8}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{13} + \frac{1}{8} a^{12} + \frac{1}{8} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} + \frac{3}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{3}{8} a + \frac{3}{8}$, $\frac{1}{8} a^{18} - \frac{1}{8} a^{14} + \frac{1}{8} a^{13} + \frac{1}{8} a^{10} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} + \frac{3}{8} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{3}{8} a^{2} + \frac{3}{8} a$, $\frac{1}{8} a^{19} + \frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{3}{8} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a - \frac{1}{8}$, $\frac{1}{7473074414800798133831027079099597125561499350665277127522498232} a^{20} - \frac{39942389418623799374010041321071163418918912796468933194058437}{934134301850099766728878384887449640695187418833159640940312279} a^{19} + \frac{18679035070973680741200382406591316269829725690824987917037187}{934134301850099766728878384887449640695187418833159640940312279} a^{18} + \frac{272392293929710502433529716358902121981482715503743478070064847}{7473074414800798133831027079099597125561499350665277127522498232} a^{17} - \frac{2684318522021243835411284347922046203626491709373272669346051}{934134301850099766728878384887449640695187418833159640940312279} a^{16} - \frac{29983655281710412919277012743931090338761587349120580603709610}{934134301850099766728878384887449640695187418833159640940312279} a^{15} + \frac{1662201814092754502161738050397527666554694706675404730951356}{934134301850099766728878384887449640695187418833159640940312279} a^{14} - \frac{439246125659285508588391364131336495599014175172324499887284191}{3736537207400399066915513539549798562780749675332638563761249116} a^{13} + \frac{14016044361998598288975730291528381826783319072226604637717859}{91135053839034123583305208281702403970262187203235086921006076} a^{12} - \frac{911821912029511779695047621222884195673384752249787271663076811}{3736537207400399066915513539549798562780749675332638563761249116} a^{11} - \frac{584437263401493443236275107698215862936672998053333451534958207}{3736537207400399066915513539549798562780749675332638563761249116} a^{10} - \frac{89948767310661142462921194371014117551328339673791590922507267}{7473074414800798133831027079099597125561499350665277127522498232} a^{9} + \frac{1085923122161889011046578368155602456287802786060233872075105425}{7473074414800798133831027079099597125561499350665277127522498232} a^{8} + \frac{726289704864260155056782477342630902473349258017930279067586175}{1868268603700199533457756769774899281390374837666319281880624558} a^{7} - \frac{636740622254079879310327032526697185372770066608363732741724725}{1868268603700199533457756769774899281390374837666319281880624558} a^{6} - \frac{1330031359846305238164546039693704769618965784425776142563996247}{7473074414800798133831027079099597125561499350665277127522498232} a^{5} - \frac{2163751828381890053866373997117737115151489604715705155908849741}{7473074414800798133831027079099597125561499350665277127522498232} a^{4} + \frac{553803645152154748084821335105363467444242207830680834889435205}{1868268603700199533457756769774899281390374837666319281880624558} a^{3} - \frac{22095173491671107522678760936520313183003465270059582314017959}{45567526919517061791652604140851201985131093601617543460503038} a^{2} + \frac{20785974436805575808229678964709878432196593422025598264265493}{287425939030799928224270272273061427906211513487126043366249932} a + \frac{3194741896866683172440820722249210176651027082107053844588024517}{7473074414800798133831027079099597125561499350665277127522498232}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 238931036050000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_7:(C_3\times D_7)$ (as 21T16):
| A solvable group of order 294 |
| The 22 conjugacy class representatives for $C_7:(C_3\times D_7)$ |
| Character table for $C_7:(C_3\times D_7)$ is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | R | $21$ | $21$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ | $21$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.6.7 | $x^{7} - 116$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 29.7.0.1 | $x^{7} - x + 3$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |