Properties

Label 21.21.2972491714...5489.2
Degree $21$
Signature $[21, 0]$
Discriminant $3^{28}\cdot 7^{38}$
Root discriminant $146.35$
Ramified primes $3, 7$
Class number $3$ (GRH)
Class group $[3]$ (GRH)
Galois group $C_{21}$ (as 21T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![48473999, 6835059, -218834343, -78664992, 356224953, 184053996, -258336281, -159797400, 96070968, 67561690, -19772382, -15568182, 2323482, 2036391, -153909, -151263, 5145, 6174, -63, -126, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^21 - 126*x^19 - 63*x^18 + 6174*x^17 + 5145*x^16 - 151263*x^15 - 153909*x^14 + 2036391*x^13 + 2323482*x^12 - 15568182*x^11 - 19772382*x^10 + 67561690*x^9 + 96070968*x^8 - 159797400*x^7 - 258336281*x^6 + 184053996*x^5 + 356224953*x^4 - 78664992*x^3 - 218834343*x^2 + 6835059*x + 48473999)
 
gp: K = bnfinit(x^21 - 126*x^19 - 63*x^18 + 6174*x^17 + 5145*x^16 - 151263*x^15 - 153909*x^14 + 2036391*x^13 + 2323482*x^12 - 15568182*x^11 - 19772382*x^10 + 67561690*x^9 + 96070968*x^8 - 159797400*x^7 - 258336281*x^6 + 184053996*x^5 + 356224953*x^4 - 78664992*x^3 - 218834343*x^2 + 6835059*x + 48473999, 1)
 

Normalized defining polynomial

\( x^{21} - 126 x^{19} - 63 x^{18} + 6174 x^{17} + 5145 x^{16} - 151263 x^{15} - 153909 x^{14} + 2036391 x^{13} + 2323482 x^{12} - 15568182 x^{11} - 19772382 x^{10} + 67561690 x^{9} + 96070968 x^{8} - 159797400 x^{7} - 258336281 x^{6} + 184053996 x^{5} + 356224953 x^{4} - 78664992 x^{3} - 218834343 x^{2} + 6835059 x + 48473999 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $21$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[21, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2972491714150324080426899160865869074720055489=3^{28}\cdot 7^{38}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $146.35$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(441=3^{2}\cdot 7^{2}\)
Dirichlet character group:    $\lbrace$$\chi_{441}(256,·)$, $\chi_{441}(1,·)$, $\chi_{441}(130,·)$, $\chi_{441}(67,·)$, $\chi_{441}(4,·)$, $\chi_{441}(193,·)$, $\chi_{441}(64,·)$, $\chi_{441}(394,·)$, $\chi_{441}(331,·)$, $\chi_{441}(268,·)$, $\chi_{441}(205,·)$, $\chi_{441}(142,·)$, $\chi_{441}(79,·)$, $\chi_{441}(16,·)$, $\chi_{441}(319,·)$, $\chi_{441}(190,·)$, $\chi_{441}(379,·)$, $\chi_{441}(316,·)$, $\chi_{441}(253,·)$, $\chi_{441}(382,·)$, $\chi_{441}(127,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{1513160823031083794496902931981415267982533530886319675607646902592799} a^{20} - \frac{334010557596654123842216458148476795763477032817631878218350807560557}{1513160823031083794496902931981415267982533530886319675607646902592799} a^{19} + \frac{334191681479537972500457648512450923593543526163083512325303755590324}{1513160823031083794496902931981415267982533530886319675607646902592799} a^{18} + \frac{436240415758415031193514993762470917072709898244130808589292577521728}{1513160823031083794496902931981415267982533530886319675607646902592799} a^{17} + \frac{527851309494472822084202343851479964562351954922240376385657555021124}{1513160823031083794496902931981415267982533530886319675607646902592799} a^{16} - \frac{220867318152723924882542270488974669254073477151592634092605724296660}{1513160823031083794496902931981415267982533530886319675607646902592799} a^{15} - \frac{204578275208528431164943024251369479231796092145126343795989350984289}{1513160823031083794496902931981415267982533530886319675607646902592799} a^{14} + \frac{118212256139422197187516423795617211309457310273212389774105391987640}{1513160823031083794496902931981415267982533530886319675607646902592799} a^{13} - \frac{665121844625285445299504516547595195629609895643194795452201501520640}{1513160823031083794496902931981415267982533530886319675607646902592799} a^{12} + \frac{180808076949854740358218154702996939951741109033557085699751635459693}{1513160823031083794496902931981415267982533530886319675607646902592799} a^{11} - \frac{593343098995712050651715083317899687300587082339750274098341316826403}{1513160823031083794496902931981415267982533530886319675607646902592799} a^{10} - \frac{263434057299850928090435432594624711304327980293244676133120608659299}{1513160823031083794496902931981415267982533530886319675607646902592799} a^{9} + \frac{54291769699791046601961190096383951316033303329644171526025321308806}{1513160823031083794496902931981415267982533530886319675607646902592799} a^{8} + \frac{543119108617604702782940218338366148418223920712091235209148361171225}{1513160823031083794496902931981415267982533530886319675607646902592799} a^{7} - \frac{185765357423964131622402102586369549092518047016650761754286810689}{7681019406249156317243162091276219634429104217697054190901760926867} a^{6} + \frac{458098236024755846486530560077070524681908887704643866042705676052710}{1513160823031083794496902931981415267982533530886319675607646902592799} a^{5} + \frac{603177834022249989467764648361144251841789479863782065113235153617473}{1513160823031083794496902931981415267982533530886319675607646902592799} a^{4} - \frac{689763351622056486222876252812842315615231279322180772257018856196251}{1513160823031083794496902931981415267982533530886319675607646902592799} a^{3} - \frac{199298367592478810936510907750756452296723239197501710919184652584755}{1513160823031083794496902931981415267982533530886319675607646902592799} a^{2} + \frac{522076259881680801450320726249153537073251042881658998530194556713971}{1513160823031083794496902931981415267982533530886319675607646902592799} a - \frac{43026739164377982777662553385982952466916598115516109972391800}{218511490277861881407356560862038778271166253813807227442768407}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $20$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2623927281262563.0 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{21}$ (as 21T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 21
The 21 conjugacy class representatives for $C_{21}$
Character table for $C_{21}$ is not computed

Intermediate fields

3.3.3969.2, 7.7.13841287201.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $21$ R ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ R ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ $21$ $21$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ $21$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ $21$ $21$ $21$ $21$ $21$ $21$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
7Data not computed