Properties

Label 21.21.297...489.2
Degree $21$
Signature $[21, 0]$
Discriminant $2.972\times 10^{45}$
Root discriminant \(146.35\)
Ramified primes $3,7$
Class number $3$ (GRH)
Class group [3] (GRH)
Galois group $C_{21}$ (as 21T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^21 - 126*x^19 - 63*x^18 + 6174*x^17 + 5145*x^16 - 151263*x^15 - 153909*x^14 + 2036391*x^13 + 2323482*x^12 - 15568182*x^11 - 19772382*x^10 + 67561690*x^9 + 96070968*x^8 - 159797400*x^7 - 258336281*x^6 + 184053996*x^5 + 356224953*x^4 - 78664992*x^3 - 218834343*x^2 + 6835059*x + 48473999)
 
gp: K = bnfinit(y^21 - 126*y^19 - 63*y^18 + 6174*y^17 + 5145*y^16 - 151263*y^15 - 153909*y^14 + 2036391*y^13 + 2323482*y^12 - 15568182*y^11 - 19772382*y^10 + 67561690*y^9 + 96070968*y^8 - 159797400*y^7 - 258336281*y^6 + 184053996*y^5 + 356224953*y^4 - 78664992*y^3 - 218834343*y^2 + 6835059*y + 48473999, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 126*x^19 - 63*x^18 + 6174*x^17 + 5145*x^16 - 151263*x^15 - 153909*x^14 + 2036391*x^13 + 2323482*x^12 - 15568182*x^11 - 19772382*x^10 + 67561690*x^9 + 96070968*x^8 - 159797400*x^7 - 258336281*x^6 + 184053996*x^5 + 356224953*x^4 - 78664992*x^3 - 218834343*x^2 + 6835059*x + 48473999);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - 126*x^19 - 63*x^18 + 6174*x^17 + 5145*x^16 - 151263*x^15 - 153909*x^14 + 2036391*x^13 + 2323482*x^12 - 15568182*x^11 - 19772382*x^10 + 67561690*x^9 + 96070968*x^8 - 159797400*x^7 - 258336281*x^6 + 184053996*x^5 + 356224953*x^4 - 78664992*x^3 - 218834343*x^2 + 6835059*x + 48473999)
 

\( x^{21} - 126 x^{19} - 63 x^{18} + 6174 x^{17} + 5145 x^{16} - 151263 x^{15} - 153909 x^{14} + \cdots + 48473999 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $21$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[21, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(2972491714150324080426899160865869074720055489\) \(\medspace = 3^{28}\cdot 7^{38}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(146.35\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{4/3}7^{38/21}\approx 146.3479683340138$
Ramified primes:   \(3\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $21$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(441=3^{2}\cdot 7^{2}\)
Dirichlet character group:    $\lbrace$$\chi_{441}(256,·)$, $\chi_{441}(1,·)$, $\chi_{441}(130,·)$, $\chi_{441}(67,·)$, $\chi_{441}(4,·)$, $\chi_{441}(193,·)$, $\chi_{441}(64,·)$, $\chi_{441}(394,·)$, $\chi_{441}(331,·)$, $\chi_{441}(268,·)$, $\chi_{441}(205,·)$, $\chi_{441}(142,·)$, $\chi_{441}(79,·)$, $\chi_{441}(16,·)$, $\chi_{441}(319,·)$, $\chi_{441}(190,·)$, $\chi_{441}(379,·)$, $\chi_{441}(316,·)$, $\chi_{441}(253,·)$, $\chi_{441}(382,·)$, $\chi_{441}(127,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{15\!\cdots\!99}a^{20}-\frac{33\!\cdots\!57}{15\!\cdots\!99}a^{19}+\frac{33\!\cdots\!24}{15\!\cdots\!99}a^{18}+\frac{43\!\cdots\!28}{15\!\cdots\!99}a^{17}+\frac{52\!\cdots\!24}{15\!\cdots\!99}a^{16}-\frac{22\!\cdots\!60}{15\!\cdots\!99}a^{15}-\frac{20\!\cdots\!89}{15\!\cdots\!99}a^{14}+\frac{11\!\cdots\!40}{15\!\cdots\!99}a^{13}-\frac{66\!\cdots\!40}{15\!\cdots\!99}a^{12}+\frac{18\!\cdots\!93}{15\!\cdots\!99}a^{11}-\frac{59\!\cdots\!03}{15\!\cdots\!99}a^{10}-\frac{26\!\cdots\!99}{15\!\cdots\!99}a^{9}+\frac{54\!\cdots\!06}{15\!\cdots\!99}a^{8}+\frac{54\!\cdots\!25}{15\!\cdots\!99}a^{7}-\frac{18\!\cdots\!89}{76\!\cdots\!67}a^{6}+\frac{45\!\cdots\!10}{15\!\cdots\!99}a^{5}+\frac{60\!\cdots\!73}{15\!\cdots\!99}a^{4}-\frac{68\!\cdots\!51}{15\!\cdots\!99}a^{3}-\frac{19\!\cdots\!55}{15\!\cdots\!99}a^{2}+\frac{52\!\cdots\!71}{15\!\cdots\!99}a-\frac{43\!\cdots\!00}{21\!\cdots\!07}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $20$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{74\!\cdots\!86}{76\!\cdots\!67}a^{20}-\frac{10\!\cdots\!22}{76\!\cdots\!67}a^{19}-\frac{92\!\cdots\!47}{76\!\cdots\!67}a^{18}+\frac{86\!\cdots\!76}{76\!\cdots\!67}a^{17}+\frac{44\!\cdots\!50}{76\!\cdots\!67}a^{16}-\frac{26\!\cdots\!54}{76\!\cdots\!67}a^{15}-\frac{10\!\cdots\!62}{76\!\cdots\!67}a^{14}+\frac{43\!\cdots\!33}{76\!\cdots\!67}a^{13}+\frac{14\!\cdots\!13}{76\!\cdots\!67}a^{12}-\frac{37\!\cdots\!18}{76\!\cdots\!67}a^{11}-\frac{11\!\cdots\!66}{76\!\cdots\!67}a^{10}+\frac{12\!\cdots\!44}{76\!\cdots\!67}a^{9}+\frac{48\!\cdots\!14}{76\!\cdots\!67}a^{8}+\frac{13\!\cdots\!59}{76\!\cdots\!67}a^{7}-\frac{12\!\cdots\!70}{76\!\cdots\!67}a^{6}-\frac{17\!\cdots\!85}{76\!\cdots\!67}a^{5}+\frac{16\!\cdots\!26}{76\!\cdots\!67}a^{4}+\frac{30\!\cdots\!10}{76\!\cdots\!67}a^{3}-\frac{10\!\cdots\!16}{76\!\cdots\!67}a^{2}-\frac{13\!\cdots\!43}{76\!\cdots\!67}a+\frac{35\!\cdots\!19}{11\!\cdots\!31}$, $\frac{41\!\cdots\!81}{76\!\cdots\!67}a^{20}-\frac{51\!\cdots\!91}{76\!\cdots\!67}a^{19}-\frac{52\!\cdots\!12}{76\!\cdots\!67}a^{18}+\frac{38\!\cdots\!76}{76\!\cdots\!67}a^{17}+\frac{25\!\cdots\!92}{76\!\cdots\!67}a^{16}-\frac{99\!\cdots\!65}{76\!\cdots\!67}a^{15}-\frac{62\!\cdots\!44}{76\!\cdots\!67}a^{14}+\frac{12\!\cdots\!77}{76\!\cdots\!67}a^{13}+\frac{83\!\cdots\!75}{76\!\cdots\!67}a^{12}-\frac{69\!\cdots\!37}{76\!\cdots\!67}a^{11}-\frac{64\!\cdots\!40}{76\!\cdots\!67}a^{10}-\frac{24\!\cdots\!55}{76\!\cdots\!67}a^{9}+\frac{28\!\cdots\!04}{76\!\cdots\!67}a^{8}+\frac{43\!\cdots\!32}{76\!\cdots\!67}a^{7}-\frac{72\!\cdots\!09}{76\!\cdots\!67}a^{6}-\frac{17\!\cdots\!73}{76\!\cdots\!67}a^{5}+\frac{99\!\cdots\!41}{76\!\cdots\!67}a^{4}+\frac{24\!\cdots\!60}{76\!\cdots\!67}a^{3}-\frac{64\!\cdots\!54}{76\!\cdots\!67}a^{2}-\frac{10\!\cdots\!33}{76\!\cdots\!67}a+\frac{23\!\cdots\!73}{11\!\cdots\!31}$, $\frac{59\!\cdots\!40}{76\!\cdots\!67}a^{20}-\frac{89\!\cdots\!37}{76\!\cdots\!67}a^{19}-\frac{73\!\cdots\!68}{76\!\cdots\!67}a^{18}+\frac{73\!\cdots\!73}{76\!\cdots\!67}a^{17}+\frac{35\!\cdots\!89}{76\!\cdots\!67}a^{16}-\frac{23\!\cdots\!36}{76\!\cdots\!67}a^{15}-\frac{85\!\cdots\!70}{76\!\cdots\!67}a^{14}+\frac{38\!\cdots\!25}{76\!\cdots\!67}a^{13}+\frac{11\!\cdots\!78}{76\!\cdots\!67}a^{12}-\frac{35\!\cdots\!20}{76\!\cdots\!67}a^{11}-\frac{86\!\cdots\!27}{76\!\cdots\!67}a^{10}+\frac{14\!\cdots\!44}{76\!\cdots\!67}a^{9}+\frac{37\!\cdots\!45}{76\!\cdots\!67}a^{8}-\frac{38\!\cdots\!14}{76\!\cdots\!67}a^{7}-\frac{93\!\cdots\!92}{76\!\cdots\!67}a^{6}-\frac{10\!\cdots\!84}{76\!\cdots\!67}a^{5}+\frac{12\!\cdots\!01}{76\!\cdots\!67}a^{4}+\frac{21\!\cdots\!96}{76\!\cdots\!67}a^{3}-\frac{79\!\cdots\!03}{76\!\cdots\!67}a^{2}-\frac{98\!\cdots\!44}{76\!\cdots\!67}a+\frac{27\!\cdots\!84}{11\!\cdots\!31}$, $\frac{21\!\cdots\!29}{76\!\cdots\!67}a^{20}-\frac{31\!\cdots\!17}{76\!\cdots\!67}a^{19}-\frac{27\!\cdots\!64}{76\!\cdots\!67}a^{18}+\frac{25\!\cdots\!05}{76\!\cdots\!67}a^{17}+\frac{13\!\cdots\!26}{76\!\cdots\!67}a^{16}-\frac{78\!\cdots\!56}{76\!\cdots\!67}a^{15}-\frac{32\!\cdots\!63}{76\!\cdots\!67}a^{14}+\frac{12\!\cdots\!23}{76\!\cdots\!67}a^{13}+\frac{42\!\cdots\!21}{76\!\cdots\!67}a^{12}-\frac{11\!\cdots\!62}{76\!\cdots\!67}a^{11}-\frac{32\!\cdots\!83}{76\!\cdots\!67}a^{10}+\frac{39\!\cdots\!85}{76\!\cdots\!67}a^{9}+\frac{14\!\cdots\!36}{76\!\cdots\!67}a^{8}+\frac{34\!\cdots\!16}{76\!\cdots\!67}a^{7}-\frac{35\!\cdots\!21}{76\!\cdots\!67}a^{6}-\frac{49\!\cdots\!99}{76\!\cdots\!67}a^{5}+\frac{47\!\cdots\!38}{76\!\cdots\!67}a^{4}+\frac{89\!\cdots\!57}{76\!\cdots\!67}a^{3}-\frac{30\!\cdots\!89}{76\!\cdots\!67}a^{2}-\frac{40\!\cdots\!59}{76\!\cdots\!67}a+\frac{10\!\cdots\!80}{11\!\cdots\!31}$, $\frac{44\!\cdots\!59}{76\!\cdots\!67}a^{20}-\frac{64\!\cdots\!55}{76\!\cdots\!67}a^{19}-\frac{54\!\cdots\!43}{76\!\cdots\!67}a^{18}+\frac{51\!\cdots\!53}{76\!\cdots\!67}a^{17}+\frac{26\!\cdots\!79}{76\!\cdots\!67}a^{16}-\frac{15\!\cdots\!94}{76\!\cdots\!67}a^{15}-\frac{64\!\cdots\!17}{76\!\cdots\!67}a^{14}+\frac{25\!\cdots\!96}{76\!\cdots\!67}a^{13}+\frac{86\!\cdots\!35}{76\!\cdots\!67}a^{12}-\frac{22\!\cdots\!24}{76\!\cdots\!67}a^{11}-\frac{65\!\cdots\!71}{76\!\cdots\!67}a^{10}+\frac{76\!\cdots\!65}{76\!\cdots\!67}a^{9}+\frac{28\!\cdots\!50}{76\!\cdots\!67}a^{8}+\frac{78\!\cdots\!76}{76\!\cdots\!67}a^{7}-\frac{71\!\cdots\!08}{76\!\cdots\!67}a^{6}-\frac{10\!\cdots\!26}{76\!\cdots\!67}a^{5}+\frac{95\!\cdots\!67}{76\!\cdots\!67}a^{4}+\frac{18\!\cdots\!76}{76\!\cdots\!67}a^{3}-\frac{61\!\cdots\!34}{76\!\cdots\!67}a^{2}-\frac{81\!\cdots\!89}{76\!\cdots\!67}a+\frac{21\!\cdots\!95}{11\!\cdots\!31}$, $\frac{25\!\cdots\!12}{76\!\cdots\!67}a^{20}-\frac{36\!\cdots\!07}{76\!\cdots\!67}a^{19}-\frac{32\!\cdots\!81}{76\!\cdots\!67}a^{18}+\frac{28\!\cdots\!14}{76\!\cdots\!67}a^{17}+\frac{15\!\cdots\!17}{76\!\cdots\!67}a^{16}-\frac{84\!\cdots\!81}{76\!\cdots\!67}a^{15}-\frac{37\!\cdots\!22}{76\!\cdots\!67}a^{14}+\frac{13\!\cdots\!88}{76\!\cdots\!67}a^{13}+\frac{50\!\cdots\!58}{76\!\cdots\!67}a^{12}-\frac{10\!\cdots\!03}{76\!\cdots\!67}a^{11}-\frac{38\!\cdots\!57}{76\!\cdots\!67}a^{10}+\frac{30\!\cdots\!96}{76\!\cdots\!67}a^{9}+\frac{17\!\cdots\!74}{76\!\cdots\!67}a^{8}+\frac{97\!\cdots\!09}{76\!\cdots\!67}a^{7}-\frac{42\!\cdots\!21}{76\!\cdots\!67}a^{6}-\frac{69\!\cdots\!20}{76\!\cdots\!67}a^{5}+\frac{57\!\cdots\!82}{76\!\cdots\!67}a^{4}+\frac{11\!\cdots\!85}{76\!\cdots\!67}a^{3}-\frac{36\!\cdots\!93}{76\!\cdots\!67}a^{2}-\frac{51\!\cdots\!63}{76\!\cdots\!67}a+\frac{12\!\cdots\!21}{11\!\cdots\!31}$, $\frac{61\!\cdots\!37}{15\!\cdots\!99}a^{20}-\frac{86\!\cdots\!87}{15\!\cdots\!99}a^{19}-\frac{76\!\cdots\!50}{15\!\cdots\!99}a^{18}+\frac{68\!\cdots\!07}{15\!\cdots\!99}a^{17}+\frac{37\!\cdots\!70}{15\!\cdots\!99}a^{16}-\frac{20\!\cdots\!26}{15\!\cdots\!99}a^{15}-\frac{90\!\cdots\!53}{15\!\cdots\!99}a^{14}+\frac{32\!\cdots\!84}{15\!\cdots\!99}a^{13}+\frac{12\!\cdots\!38}{15\!\cdots\!99}a^{12}-\frac{27\!\cdots\!63}{15\!\cdots\!99}a^{11}-\frac{92\!\cdots\!06}{15\!\cdots\!99}a^{10}+\frac{79\!\cdots\!00}{15\!\cdots\!99}a^{9}+\frac{40\!\cdots\!11}{15\!\cdots\!99}a^{8}+\frac{21\!\cdots\!15}{15\!\cdots\!99}a^{7}-\frac{51\!\cdots\!52}{76\!\cdots\!67}a^{6}-\frac{16\!\cdots\!01}{15\!\cdots\!99}a^{5}+\frac{13\!\cdots\!57}{15\!\cdots\!99}a^{4}+\frac{27\!\cdots\!06}{15\!\cdots\!99}a^{3}-\frac{87\!\cdots\!54}{15\!\cdots\!99}a^{2}-\frac{12\!\cdots\!16}{15\!\cdots\!99}a+\frac{30\!\cdots\!59}{21\!\cdots\!07}$, $\frac{31\!\cdots\!06}{15\!\cdots\!99}a^{20}-\frac{46\!\cdots\!93}{15\!\cdots\!99}a^{19}-\frac{39\!\cdots\!60}{15\!\cdots\!99}a^{18}+\frac{37\!\cdots\!51}{15\!\cdots\!99}a^{17}+\frac{18\!\cdots\!40}{15\!\cdots\!99}a^{16}-\frac{11\!\cdots\!10}{15\!\cdots\!99}a^{15}-\frac{46\!\cdots\!41}{15\!\cdots\!99}a^{14}+\frac{19\!\cdots\!61}{15\!\cdots\!99}a^{13}+\frac{61\!\cdots\!03}{15\!\cdots\!99}a^{12}-\frac{17\!\cdots\!91}{15\!\cdots\!99}a^{11}-\frac{46\!\cdots\!09}{15\!\cdots\!99}a^{10}+\frac{63\!\cdots\!41}{15\!\cdots\!99}a^{9}+\frac{20\!\cdots\!49}{15\!\cdots\!99}a^{8}+\frac{23\!\cdots\!06}{15\!\cdots\!99}a^{7}-\frac{25\!\cdots\!35}{76\!\cdots\!67}a^{6}-\frac{66\!\cdots\!09}{15\!\cdots\!99}a^{5}+\frac{67\!\cdots\!41}{15\!\cdots\!99}a^{4}+\frac{12\!\cdots\!02}{15\!\cdots\!99}a^{3}-\frac{43\!\cdots\!24}{15\!\cdots\!99}a^{2}-\frac{55\!\cdots\!48}{15\!\cdots\!99}a+\frac{14\!\cdots\!88}{21\!\cdots\!07}$, $\frac{60\!\cdots\!03}{15\!\cdots\!99}a^{20}-\frac{87\!\cdots\!66}{15\!\cdots\!99}a^{19}-\frac{74\!\cdots\!41}{15\!\cdots\!99}a^{18}+\frac{70\!\cdots\!80}{15\!\cdots\!99}a^{17}+\frac{36\!\cdots\!99}{15\!\cdots\!99}a^{16}-\frac{21\!\cdots\!66}{15\!\cdots\!99}a^{15}-\frac{88\!\cdots\!03}{15\!\cdots\!99}a^{14}+\frac{34\!\cdots\!88}{15\!\cdots\!99}a^{13}+\frac{11\!\cdots\!53}{15\!\cdots\!99}a^{12}-\frac{30\!\cdots\!58}{15\!\cdots\!99}a^{11}-\frac{89\!\cdots\!83}{15\!\cdots\!99}a^{10}+\frac{10\!\cdots\!46}{15\!\cdots\!99}a^{9}+\frac{39\!\cdots\!01}{15\!\cdots\!99}a^{8}+\frac{11\!\cdots\!32}{15\!\cdots\!99}a^{7}-\frac{49\!\cdots\!25}{76\!\cdots\!67}a^{6}-\frac{14\!\cdots\!69}{15\!\cdots\!99}a^{5}+\frac{13\!\cdots\!45}{15\!\cdots\!99}a^{4}+\frac{25\!\cdots\!88}{15\!\cdots\!99}a^{3}-\frac{83\!\cdots\!17}{15\!\cdots\!99}a^{2}-\frac{11\!\cdots\!41}{15\!\cdots\!99}a+\frac{29\!\cdots\!11}{21\!\cdots\!07}$, $\frac{12\!\cdots\!15}{15\!\cdots\!99}a^{20}-\frac{17\!\cdots\!94}{15\!\cdots\!99}a^{19}-\frac{15\!\cdots\!17}{15\!\cdots\!99}a^{18}+\frac{13\!\cdots\!53}{15\!\cdots\!99}a^{17}+\frac{77\!\cdots\!35}{15\!\cdots\!99}a^{16}-\frac{39\!\cdots\!22}{15\!\cdots\!99}a^{15}-\frac{18\!\cdots\!60}{15\!\cdots\!99}a^{14}+\frac{60\!\cdots\!12}{15\!\cdots\!99}a^{13}+\frac{25\!\cdots\!02}{15\!\cdots\!99}a^{12}-\frac{47\!\cdots\!99}{15\!\cdots\!99}a^{11}-\frac{19\!\cdots\!21}{15\!\cdots\!99}a^{10}+\frac{10\!\cdots\!57}{15\!\cdots\!99}a^{9}+\frac{84\!\cdots\!60}{15\!\cdots\!99}a^{8}+\frac{66\!\cdots\!06}{15\!\cdots\!99}a^{7}-\frac{10\!\cdots\!91}{76\!\cdots\!67}a^{6}-\frac{38\!\cdots\!94}{15\!\cdots\!99}a^{5}+\frac{28\!\cdots\!37}{15\!\cdots\!99}a^{4}+\frac{61\!\cdots\!06}{15\!\cdots\!99}a^{3}-\frac{18\!\cdots\!30}{15\!\cdots\!99}a^{2}-\frac{26\!\cdots\!19}{15\!\cdots\!99}a+\frac{65\!\cdots\!40}{21\!\cdots\!07}$, $\frac{17\!\cdots\!14}{15\!\cdots\!99}a^{20}-\frac{23\!\cdots\!92}{15\!\cdots\!99}a^{19}-\frac{21\!\cdots\!40}{15\!\cdots\!99}a^{18}+\frac{18\!\cdots\!98}{15\!\cdots\!99}a^{17}+\frac{10\!\cdots\!75}{15\!\cdots\!99}a^{16}-\frac{52\!\cdots\!43}{15\!\cdots\!99}a^{15}-\frac{25\!\cdots\!53}{15\!\cdots\!99}a^{14}+\frac{79\!\cdots\!00}{15\!\cdots\!99}a^{13}+\frac{34\!\cdots\!32}{15\!\cdots\!99}a^{12}-\frac{61\!\cdots\!69}{15\!\cdots\!99}a^{11}-\frac{26\!\cdots\!12}{15\!\cdots\!99}a^{10}+\frac{12\!\cdots\!93}{15\!\cdots\!99}a^{9}+\frac{11\!\cdots\!07}{15\!\cdots\!99}a^{8}+\frac{97\!\cdots\!60}{15\!\cdots\!99}a^{7}-\frac{14\!\cdots\!45}{76\!\cdots\!67}a^{6}-\frac{53\!\cdots\!34}{15\!\cdots\!99}a^{5}+\frac{39\!\cdots\!06}{15\!\cdots\!99}a^{4}+\frac{85\!\cdots\!89}{15\!\cdots\!99}a^{3}-\frac{25\!\cdots\!87}{15\!\cdots\!99}a^{2}-\frac{36\!\cdots\!47}{15\!\cdots\!99}a+\frac{89\!\cdots\!87}{21\!\cdots\!07}$, $\frac{15\!\cdots\!82}{15\!\cdots\!99}a^{20}-\frac{22\!\cdots\!62}{15\!\cdots\!99}a^{19}-\frac{19\!\cdots\!96}{15\!\cdots\!99}a^{18}+\frac{18\!\cdots\!16}{15\!\cdots\!99}a^{17}+\frac{95\!\cdots\!05}{15\!\cdots\!99}a^{16}-\frac{54\!\cdots\!25}{15\!\cdots\!99}a^{15}-\frac{23\!\cdots\!41}{15\!\cdots\!99}a^{14}+\frac{86\!\cdots\!74}{15\!\cdots\!99}a^{13}+\frac{31\!\cdots\!20}{15\!\cdots\!99}a^{12}-\frac{73\!\cdots\!63}{15\!\cdots\!99}a^{11}-\frac{23\!\cdots\!32}{15\!\cdots\!99}a^{10}+\frac{22\!\cdots\!19}{15\!\cdots\!99}a^{9}+\frac{10\!\cdots\!09}{15\!\cdots\!99}a^{8}+\frac{47\!\cdots\!30}{15\!\cdots\!99}a^{7}-\frac{13\!\cdots\!11}{76\!\cdots\!67}a^{6}-\frac{40\!\cdots\!48}{15\!\cdots\!99}a^{5}+\frac{35\!\cdots\!84}{15\!\cdots\!99}a^{4}+\frac{69\!\cdots\!53}{15\!\cdots\!99}a^{3}-\frac{22\!\cdots\!87}{15\!\cdots\!99}a^{2}-\frac{30\!\cdots\!91}{15\!\cdots\!99}a+\frac{78\!\cdots\!07}{21\!\cdots\!07}$, $\frac{14\!\cdots\!52}{15\!\cdots\!99}a^{20}-\frac{20\!\cdots\!46}{15\!\cdots\!99}a^{19}-\frac{18\!\cdots\!89}{15\!\cdots\!99}a^{18}+\frac{16\!\cdots\!47}{15\!\cdots\!99}a^{17}+\frac{87\!\cdots\!18}{15\!\cdots\!99}a^{16}-\frac{48\!\cdots\!91}{15\!\cdots\!99}a^{15}-\frac{21\!\cdots\!77}{15\!\cdots\!99}a^{14}+\frac{75\!\cdots\!69}{15\!\cdots\!99}a^{13}+\frac{28\!\cdots\!94}{15\!\cdots\!99}a^{12}-\frac{63\!\cdots\!24}{15\!\cdots\!99}a^{11}-\frac{21\!\cdots\!97}{15\!\cdots\!99}a^{10}+\frac{18\!\cdots\!88}{15\!\cdots\!99}a^{9}+\frac{95\!\cdots\!40}{15\!\cdots\!99}a^{8}+\frac{51\!\cdots\!98}{15\!\cdots\!99}a^{7}-\frac{12\!\cdots\!49}{76\!\cdots\!67}a^{6}-\frac{38\!\cdots\!19}{15\!\cdots\!99}a^{5}+\frac{32\!\cdots\!28}{15\!\cdots\!99}a^{4}+\frac{65\!\cdots\!36}{15\!\cdots\!99}a^{3}-\frac{20\!\cdots\!66}{15\!\cdots\!99}a^{2}-\frac{28\!\cdots\!28}{15\!\cdots\!99}a+\frac{72\!\cdots\!60}{21\!\cdots\!07}$, $\frac{81\!\cdots\!29}{15\!\cdots\!99}a^{20}-\frac{11\!\cdots\!35}{15\!\cdots\!99}a^{19}-\frac{10\!\cdots\!54}{15\!\cdots\!99}a^{18}+\frac{95\!\cdots\!19}{15\!\cdots\!99}a^{17}+\frac{48\!\cdots\!73}{15\!\cdots\!99}a^{16}-\frac{29\!\cdots\!84}{15\!\cdots\!99}a^{15}-\frac{11\!\cdots\!00}{15\!\cdots\!99}a^{14}+\frac{47\!\cdots\!50}{15\!\cdots\!99}a^{13}+\frac{15\!\cdots\!27}{15\!\cdots\!99}a^{12}-\frac{41\!\cdots\!46}{15\!\cdots\!99}a^{11}-\frac{12\!\cdots\!26}{15\!\cdots\!99}a^{10}+\frac{14\!\cdots\!74}{15\!\cdots\!99}a^{9}+\frac{52\!\cdots\!34}{15\!\cdots\!99}a^{8}+\frac{13\!\cdots\!23}{15\!\cdots\!99}a^{7}-\frac{66\!\cdots\!11}{76\!\cdots\!67}a^{6}-\frac{18\!\cdots\!89}{15\!\cdots\!99}a^{5}+\frac{17\!\cdots\!71}{15\!\cdots\!99}a^{4}+\frac{33\!\cdots\!55}{15\!\cdots\!99}a^{3}-\frac{11\!\cdots\!47}{15\!\cdots\!99}a^{2}-\frac{14\!\cdots\!17}{15\!\cdots\!99}a+\frac{39\!\cdots\!78}{21\!\cdots\!07}$, $\frac{96\!\cdots\!63}{66\!\cdots\!09}a^{20}-\frac{13\!\cdots\!20}{66\!\cdots\!09}a^{19}-\frac{11\!\cdots\!93}{66\!\cdots\!09}a^{18}+\frac{10\!\cdots\!58}{66\!\cdots\!09}a^{17}+\frac{57\!\cdots\!31}{66\!\cdots\!09}a^{16}-\frac{30\!\cdots\!97}{66\!\cdots\!09}a^{15}-\frac{14\!\cdots\!97}{66\!\cdots\!09}a^{14}+\frac{47\!\cdots\!00}{66\!\cdots\!09}a^{13}+\frac{18\!\cdots\!94}{66\!\cdots\!09}a^{12}-\frac{39\!\cdots\!48}{66\!\cdots\!09}a^{11}-\frac{14\!\cdots\!00}{66\!\cdots\!09}a^{10}+\frac{10\!\cdots\!36}{66\!\cdots\!09}a^{9}+\frac{63\!\cdots\!39}{66\!\cdots\!09}a^{8}+\frac{41\!\cdots\!80}{66\!\cdots\!09}a^{7}-\frac{80\!\cdots\!28}{33\!\cdots\!97}a^{6}-\frac{27\!\cdots\!51}{66\!\cdots\!09}a^{5}+\frac{21\!\cdots\!68}{66\!\cdots\!09}a^{4}+\frac{44\!\cdots\!84}{66\!\cdots\!09}a^{3}-\frac{13\!\cdots\!19}{66\!\cdots\!09}a^{2}-\frac{19\!\cdots\!15}{66\!\cdots\!09}a+\frac{33\!\cdots\!49}{66\!\cdots\!09}$, $\frac{98\!\cdots\!76}{66\!\cdots\!09}a^{20}-\frac{13\!\cdots\!94}{66\!\cdots\!09}a^{19}-\frac{12\!\cdots\!69}{66\!\cdots\!09}a^{18}+\frac{10\!\cdots\!54}{66\!\cdots\!09}a^{17}+\frac{59\!\cdots\!28}{66\!\cdots\!09}a^{16}-\frac{28\!\cdots\!50}{66\!\cdots\!09}a^{15}-\frac{14\!\cdots\!72}{66\!\cdots\!09}a^{14}+\frac{42\!\cdots\!55}{66\!\cdots\!09}a^{13}+\frac{19\!\cdots\!94}{66\!\cdots\!09}a^{12}-\frac{31\!\cdots\!82}{66\!\cdots\!09}a^{11}-\frac{14\!\cdots\!65}{66\!\cdots\!09}a^{10}+\frac{50\!\cdots\!09}{66\!\cdots\!09}a^{9}+\frac{66\!\cdots\!95}{66\!\cdots\!09}a^{8}+\frac{61\!\cdots\!11}{66\!\cdots\!09}a^{7}-\frac{84\!\cdots\!32}{33\!\cdots\!97}a^{6}-\frac{31\!\cdots\!57}{66\!\cdots\!09}a^{5}+\frac{22\!\cdots\!61}{66\!\cdots\!09}a^{4}+\frac{49\!\cdots\!78}{66\!\cdots\!09}a^{3}-\frac{14\!\cdots\!09}{66\!\cdots\!09}a^{2}-\frac{21\!\cdots\!04}{66\!\cdots\!09}a+\frac{35\!\cdots\!99}{66\!\cdots\!09}$, $\frac{19\!\cdots\!18}{15\!\cdots\!99}a^{20}-\frac{24\!\cdots\!88}{15\!\cdots\!99}a^{19}-\frac{24\!\cdots\!72}{15\!\cdots\!99}a^{18}+\frac{18\!\cdots\!12}{15\!\cdots\!99}a^{17}+\frac{11\!\cdots\!07}{15\!\cdots\!99}a^{16}-\frac{50\!\cdots\!91}{15\!\cdots\!99}a^{15}-\frac{28\!\cdots\!68}{15\!\cdots\!99}a^{14}+\frac{70\!\cdots\!87}{15\!\cdots\!99}a^{13}+\frac{38\!\cdots\!79}{15\!\cdots\!99}a^{12}-\frac{45\!\cdots\!33}{15\!\cdots\!99}a^{11}-\frac{29\!\cdots\!85}{15\!\cdots\!99}a^{10}-\frac{21\!\cdots\!51}{15\!\cdots\!99}a^{9}+\frac{13\!\cdots\!35}{15\!\cdots\!99}a^{8}+\frac{16\!\cdots\!72}{15\!\cdots\!99}a^{7}-\frac{16\!\cdots\!62}{76\!\cdots\!67}a^{6}-\frac{72\!\cdots\!49}{15\!\cdots\!99}a^{5}+\frac{45\!\cdots\!68}{15\!\cdots\!99}a^{4}+\frac{10\!\cdots\!61}{15\!\cdots\!99}a^{3}-\frac{29\!\cdots\!38}{15\!\cdots\!99}a^{2}-\frac{45\!\cdots\!60}{15\!\cdots\!99}a+\frac{10\!\cdots\!42}{21\!\cdots\!07}$, $\frac{32\!\cdots\!24}{15\!\cdots\!99}a^{20}-\frac{47\!\cdots\!33}{15\!\cdots\!99}a^{19}-\frac{40\!\cdots\!04}{15\!\cdots\!99}a^{18}+\frac{37\!\cdots\!53}{15\!\cdots\!99}a^{17}+\frac{19\!\cdots\!60}{15\!\cdots\!99}a^{16}-\frac{11\!\cdots\!00}{15\!\cdots\!99}a^{15}-\frac{47\!\cdots\!67}{15\!\cdots\!99}a^{14}+\frac{18\!\cdots\!65}{15\!\cdots\!99}a^{13}+\frac{63\!\cdots\!65}{15\!\cdots\!99}a^{12}-\frac{16\!\cdots\!13}{15\!\cdots\!99}a^{11}-\frac{48\!\cdots\!79}{15\!\cdots\!99}a^{10}+\frac{55\!\cdots\!45}{15\!\cdots\!99}a^{9}+\frac{21\!\cdots\!57}{15\!\cdots\!99}a^{8}+\frac{59\!\cdots\!44}{15\!\cdots\!99}a^{7}-\frac{26\!\cdots\!55}{76\!\cdots\!67}a^{6}-\frac{75\!\cdots\!91}{15\!\cdots\!99}a^{5}+\frac{70\!\cdots\!17}{15\!\cdots\!99}a^{4}+\frac{13\!\cdots\!92}{15\!\cdots\!99}a^{3}-\frac{45\!\cdots\!06}{15\!\cdots\!99}a^{2}-\frac{59\!\cdots\!96}{15\!\cdots\!99}a+\frac{15\!\cdots\!02}{21\!\cdots\!07}$, $\frac{58\!\cdots\!75}{15\!\cdots\!99}a^{20}-\frac{85\!\cdots\!01}{15\!\cdots\!99}a^{19}-\frac{72\!\cdots\!36}{15\!\cdots\!99}a^{18}+\frac{68\!\cdots\!66}{15\!\cdots\!99}a^{17}+\frac{35\!\cdots\!06}{15\!\cdots\!99}a^{16}-\frac{21\!\cdots\!88}{15\!\cdots\!99}a^{15}-\frac{85\!\cdots\!48}{15\!\cdots\!99}a^{14}+\frac{34\!\cdots\!89}{15\!\cdots\!99}a^{13}+\frac{11\!\cdots\!63}{15\!\cdots\!99}a^{12}-\frac{30\!\cdots\!58}{15\!\cdots\!99}a^{11}-\frac{87\!\cdots\!89}{15\!\cdots\!99}a^{10}+\frac{10\!\cdots\!15}{15\!\cdots\!99}a^{9}+\frac{38\!\cdots\!59}{15\!\cdots\!99}a^{8}+\frac{91\!\cdots\!50}{15\!\cdots\!99}a^{7}-\frac{48\!\cdots\!83}{76\!\cdots\!67}a^{6}-\frac{13\!\cdots\!84}{15\!\cdots\!99}a^{5}+\frac{12\!\cdots\!42}{15\!\cdots\!99}a^{4}+\frac{23\!\cdots\!71}{15\!\cdots\!99}a^{3}-\frac{80\!\cdots\!93}{15\!\cdots\!99}a^{2}-\frac{10\!\cdots\!36}{15\!\cdots\!99}a+\frac{28\!\cdots\!44}{21\!\cdots\!07}$, $\frac{52\!\cdots\!21}{76\!\cdots\!67}a^{20}-\frac{72\!\cdots\!78}{76\!\cdots\!67}a^{19}-\frac{64\!\cdots\!72}{76\!\cdots\!67}a^{18}+\frac{57\!\cdots\!21}{76\!\cdots\!67}a^{17}+\frac{31\!\cdots\!05}{76\!\cdots\!67}a^{16}-\frac{17\!\cdots\!97}{76\!\cdots\!67}a^{15}-\frac{76\!\cdots\!55}{76\!\cdots\!67}a^{14}+\frac{26\!\cdots\!97}{76\!\cdots\!67}a^{13}+\frac{10\!\cdots\!38}{76\!\cdots\!67}a^{12}-\frac{22\!\cdots\!58}{76\!\cdots\!67}a^{11}-\frac{77\!\cdots\!30}{76\!\cdots\!67}a^{10}+\frac{62\!\cdots\!47}{76\!\cdots\!67}a^{9}+\frac{34\!\cdots\!70}{76\!\cdots\!67}a^{8}+\frac{19\!\cdots\!77}{76\!\cdots\!67}a^{7}-\frac{86\!\cdots\!56}{76\!\cdots\!67}a^{6}-\frac{13\!\cdots\!54}{76\!\cdots\!67}a^{5}+\frac{11\!\cdots\!18}{76\!\cdots\!67}a^{4}+\frac{23\!\cdots\!18}{76\!\cdots\!67}a^{3}-\frac{74\!\cdots\!25}{76\!\cdots\!67}a^{2}-\frac{10\!\cdots\!70}{76\!\cdots\!67}a+\frac{26\!\cdots\!07}{11\!\cdots\!31}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2623927281262563.0 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{21}\cdot(2\pi)^{0}\cdot 2623927281262563.0 \cdot 3}{2\cdot\sqrt{2972491714150324080426899160865869074720055489}}\cr\approx \mathstrut & 0.151395384961757 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^21 - 126*x^19 - 63*x^18 + 6174*x^17 + 5145*x^16 - 151263*x^15 - 153909*x^14 + 2036391*x^13 + 2323482*x^12 - 15568182*x^11 - 19772382*x^10 + 67561690*x^9 + 96070968*x^8 - 159797400*x^7 - 258336281*x^6 + 184053996*x^5 + 356224953*x^4 - 78664992*x^3 - 218834343*x^2 + 6835059*x + 48473999)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^21 - 126*x^19 - 63*x^18 + 6174*x^17 + 5145*x^16 - 151263*x^15 - 153909*x^14 + 2036391*x^13 + 2323482*x^12 - 15568182*x^11 - 19772382*x^10 + 67561690*x^9 + 96070968*x^8 - 159797400*x^7 - 258336281*x^6 + 184053996*x^5 + 356224953*x^4 - 78664992*x^3 - 218834343*x^2 + 6835059*x + 48473999, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^21 - 126*x^19 - 63*x^18 + 6174*x^17 + 5145*x^16 - 151263*x^15 - 153909*x^14 + 2036391*x^13 + 2323482*x^12 - 15568182*x^11 - 19772382*x^10 + 67561690*x^9 + 96070968*x^8 - 159797400*x^7 - 258336281*x^6 + 184053996*x^5 + 356224953*x^4 - 78664992*x^3 - 218834343*x^2 + 6835059*x + 48473999);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - 126*x^19 - 63*x^18 + 6174*x^17 + 5145*x^16 - 151263*x^15 - 153909*x^14 + 2036391*x^13 + 2323482*x^12 - 15568182*x^11 - 19772382*x^10 + 67561690*x^9 + 96070968*x^8 - 159797400*x^7 - 258336281*x^6 + 184053996*x^5 + 356224953*x^4 - 78664992*x^3 - 218834343*x^2 + 6835059*x + 48473999);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{21}$ (as 21T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 21
The 21 conjugacy class representatives for $C_{21}$
Character table for $C_{21}$

Intermediate fields

3.3.3969.2, 7.7.13841287201.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $21$ R ${\href{/padicField/5.7.0.1}{7} }^{3}$ R ${\href{/padicField/11.7.0.1}{7} }^{3}$ $21$ $21$ ${\href{/padicField/19.3.0.1}{3} }^{7}$ ${\href{/padicField/23.7.0.1}{7} }^{3}$ $21$ ${\href{/padicField/31.3.0.1}{3} }^{7}$ $21$ $21$ $21$ $21$ $21$ $21$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $21$$3$$7$$28$
\(7\) Copy content Toggle raw display Deg $21$$21$$1$$38$