Properties

Label 21.21.2972491714...5489.1
Degree $21$
Signature $[21, 0]$
Discriminant $3^{28}\cdot 7^{38}$
Root discriminant $146.35$
Ramified primes $3, 7$
Class number $3$ (GRH)
Class group $[3]$ (GRH)
Galois group $C_{21}$ (as 21T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1148581, -2195739, 32454954, 46911963, -130714458, -293313510, -81540704, 200914581, 148886451, -21758891, -48369027, -6395823, 6429192, 1638168, -403956, -145530, 11760, 6174, -126, -126, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^21 - 126*x^19 - 126*x^18 + 6174*x^17 + 11760*x^16 - 145530*x^15 - 403956*x^14 + 1638168*x^13 + 6429192*x^12 - 6395823*x^11 - 48369027*x^10 - 21758891*x^9 + 148886451*x^8 + 200914581*x^7 - 81540704*x^6 - 293313510*x^5 - 130714458*x^4 + 46911963*x^3 + 32454954*x^2 - 2195739*x - 1148581)
 
gp: K = bnfinit(x^21 - 126*x^19 - 126*x^18 + 6174*x^17 + 11760*x^16 - 145530*x^15 - 403956*x^14 + 1638168*x^13 + 6429192*x^12 - 6395823*x^11 - 48369027*x^10 - 21758891*x^9 + 148886451*x^8 + 200914581*x^7 - 81540704*x^6 - 293313510*x^5 - 130714458*x^4 + 46911963*x^3 + 32454954*x^2 - 2195739*x - 1148581, 1)
 

Normalized defining polynomial

\( x^{21} - 126 x^{19} - 126 x^{18} + 6174 x^{17} + 11760 x^{16} - 145530 x^{15} - 403956 x^{14} + 1638168 x^{13} + 6429192 x^{12} - 6395823 x^{11} - 48369027 x^{10} - 21758891 x^{9} + 148886451 x^{8} + 200914581 x^{7} - 81540704 x^{6} - 293313510 x^{5} - 130714458 x^{4} + 46911963 x^{3} + 32454954 x^{2} - 2195739 x - 1148581 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $21$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[21, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2972491714150324080426899160865869074720055489=3^{28}\cdot 7^{38}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $146.35$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(441=3^{2}\cdot 7^{2}\)
Dirichlet character group:    $\lbrace$$\chi_{441}(64,·)$, $\chi_{441}(1,·)$, $\chi_{441}(403,·)$, $\chi_{441}(340,·)$, $\chi_{441}(277,·)$, $\chi_{441}(214,·)$, $\chi_{441}(151,·)$, $\chi_{441}(88,·)$, $\chi_{441}(25,·)$, $\chi_{441}(436,·)$, $\chi_{441}(373,·)$, $\chi_{441}(310,·)$, $\chi_{441}(247,·)$, $\chi_{441}(184,·)$, $\chi_{441}(121,·)$, $\chi_{441}(58,·)$, $\chi_{441}(379,·)$, $\chi_{441}(316,·)$, $\chi_{441}(253,·)$, $\chi_{441}(190,·)$, $\chi_{441}(127,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{31} a^{16} + \frac{2}{31} a^{15} + \frac{12}{31} a^{14} + \frac{2}{31} a^{13} + \frac{7}{31} a^{12} - \frac{13}{31} a^{11} - \frac{9}{31} a^{10} - \frac{15}{31} a^{9} + \frac{6}{31} a^{8} + \frac{10}{31} a^{7} + \frac{2}{31} a^{6} - \frac{5}{31} a^{5} - \frac{8}{31} a^{4} + \frac{13}{31} a^{3} - \frac{8}{31} a^{2} + \frac{4}{31} a$, $\frac{1}{31} a^{17} + \frac{8}{31} a^{15} + \frac{9}{31} a^{14} + \frac{3}{31} a^{13} + \frac{4}{31} a^{12} - \frac{14}{31} a^{11} + \frac{3}{31} a^{10} + \frac{5}{31} a^{9} - \frac{2}{31} a^{8} + \frac{13}{31} a^{7} - \frac{9}{31} a^{6} + \frac{2}{31} a^{5} - \frac{2}{31} a^{4} - \frac{3}{31} a^{3} - \frac{11}{31} a^{2} - \frac{8}{31} a$, $\frac{1}{31} a^{18} - \frac{7}{31} a^{15} - \frac{12}{31} a^{13} - \frac{8}{31} a^{12} + \frac{14}{31} a^{11} + \frac{15}{31} a^{10} - \frac{6}{31} a^{9} - \frac{4}{31} a^{8} + \frac{4}{31} a^{7} - \frac{14}{31} a^{6} + \frac{7}{31} a^{5} - \frac{1}{31} a^{4} + \frac{9}{31} a^{3} - \frac{6}{31} a^{2} - \frac{1}{31} a$, $\frac{1}{198568488193} a^{19} - \frac{1963093208}{198568488193} a^{18} - \frac{2130700570}{198568488193} a^{17} + \frac{1473783435}{198568488193} a^{16} - \frac{26134845722}{198568488193} a^{15} - \frac{53797383297}{198568488193} a^{14} + \frac{98012076260}{198568488193} a^{13} + \frac{85567697330}{198568488193} a^{12} - \frac{5188837808}{198568488193} a^{11} - \frac{14798208455}{198568488193} a^{10} + \frac{12222119564}{198568488193} a^{9} - \frac{10467406724}{198568488193} a^{8} - \frac{86431922343}{198568488193} a^{7} - \frac{30116099667}{198568488193} a^{6} - \frac{99189511776}{198568488193} a^{5} + \frac{51927877845}{198568488193} a^{4} + \frac{93673121835}{198568488193} a^{3} - \frac{97142112826}{198568488193} a^{2} + \frac{79880584004}{198568488193} a + \frac{104450}{1210171}$, $\frac{1}{8940244642488969252365538807324154343629835943867986075599} a^{20} - \frac{20367815696017094133511174665582685648613001313}{8940244642488969252365538807324154343629835943867986075599} a^{19} + \frac{137945854430075035418621858102871752540422765572785704573}{8940244642488969252365538807324154343629835943867986075599} a^{18} + \frac{63341264847491891401570909135885793855046873510595435150}{8940244642488969252365538807324154343629835943867986075599} a^{17} + \frac{61718884131662867621491173562899698268868835145793686465}{8940244642488969252365538807324154343629835943867986075599} a^{16} + \frac{2654340483816097214196244360867634911925714764823224560812}{8940244642488969252365538807324154343629835943867986075599} a^{15} + \frac{4238174020536199975561268422798142219140098230984728559772}{8940244642488969252365538807324154343629835943867986075599} a^{14} - \frac{244678583233946574185095169844881299658480505543553879392}{8940244642488969252365538807324154343629835943867986075599} a^{13} - \frac{154582601505407510432641053130554005671037848765863301099}{8940244642488969252365538807324154343629835943867986075599} a^{12} + \frac{2687486061307556111399267903974683591034324201646015345906}{8940244642488969252365538807324154343629835943867986075599} a^{11} + \frac{3321289714365877919503191899462563072460267807152387555583}{8940244642488969252365538807324154343629835943867986075599} a^{10} + \frac{2068617098257418401195933378405286242574728180409086756886}{8940244642488969252365538807324154343629835943867986075599} a^{9} - \frac{3543009014401994042657653796029616805622645480493430766296}{8940244642488969252365538807324154343629835943867986075599} a^{8} - \frac{1571451863259946491700818729475054773027701364981250381917}{8940244642488969252365538807324154343629835943867986075599} a^{7} + \frac{1277344648556015522829200543262406267671463659477574308869}{8940244642488969252365538807324154343629835943867986075599} a^{6} - \frac{606549628983664265039019151184997197099074691099800538651}{8940244642488969252365538807324154343629835943867986075599} a^{5} - \frac{1614569811380776793087589343033682813233615735258137382835}{8940244642488969252365538807324154343629835943867986075599} a^{4} - \frac{4015307268282246912184036131256073084654061399440791480898}{8940244642488969252365538807324154343629835943867986075599} a^{3} - \frac{3563842917468563274999190519240156383283421549704661972083}{8940244642488969252365538807324154343629835943867986075599} a^{2} + \frac{147585257150619152557534080226188622135123082286737132993}{8940244642488969252365538807324154343629835943867986075599} a - \frac{6944282224055127825938553230299957749273634488008955}{54486111556279256549219229337129101391550836734262453}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $20$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 7412107993664674.0 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{21}$ (as 21T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 21
The 21 conjugacy class representatives for $C_{21}$
Character table for $C_{21}$ is not computed

Intermediate fields

3.3.3969.1, 7.7.13841287201.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ R $21$ R $21$ $21$ $21$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ $21$ $21$ ${\href{/LocalNumberField/31.1.0.1}{1} }^{21}$ $21$ $21$ $21$ ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ $21$ ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
7Data not computed