Normalized defining polynomial
\( x^{21} - 8 x^{20} - 286 x^{19} + 2840 x^{18} + 28861 x^{17} - 390612 x^{16} - 916976 x^{15} + 26203756 x^{14} - 37177172 x^{13} - 860207344 x^{12} + 3524667960 x^{11} + 10376543920 x^{10} - 91345377426 x^{9} + 79685739796 x^{8} + 801910625048 x^{7} - 2394572957544 x^{6} + 104630015428 x^{5} + 9746316853472 x^{4} - 17207531688880 x^{3} + 11715416366816 x^{2} - 3156002844800 x + 230279602424 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(295979008504268159194801141175012892451266523973852170551296=2^{38}\cdot 37^{2}\cdot 809^{7}\cdot 2719^{2}\cdot 684904123^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $679.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 809, 2719, 684904123$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7}$, $\frac{1}{8170989313245622770145610515004962750591649992262830320869463207732008429416908478099073124265972} a^{20} - \frac{244784813714828848420791759941923562953925687996566669815271077852472232849187289667818918403505}{8170989313245622770145610515004962750591649992262830320869463207732008429416908478099073124265972} a^{19} + \frac{678543625219490943414043052748652787439084244361114917259669170953919086791174182032755433579361}{8170989313245622770145610515004962750591649992262830320869463207732008429416908478099073124265972} a^{18} + \frac{466629335481589066149040316522511830813244305245618103217762671125968114789961368078028641027265}{4085494656622811385072805257502481375295824996131415160434731603866004214708454239049536562132986} a^{17} - \frac{659454951804154843070928765609293026152469191334564323954750288478792620483619954107158061050783}{8170989313245622770145610515004962750591649992262830320869463207732008429416908478099073124265972} a^{16} + \frac{2039727725611350340872420220729768934338083327765496835331772161504495118053169514909907625625713}{8170989313245622770145610515004962750591649992262830320869463207732008429416908478099073124265972} a^{15} - \frac{150952996388975459164847773325050518882075986262764358854511098623152283072506244919252119574759}{8170989313245622770145610515004962750591649992262830320869463207732008429416908478099073124265972} a^{14} + \frac{366822251528947157152720341790591458374239455703746479026052422302745503785815941802637843668019}{4085494656622811385072805257502481375295824996131415160434731603866004214708454239049536562132986} a^{13} + \frac{676093667897260528312589862994481544930428752016946905224671540265300446076070508534068106071003}{4085494656622811385072805257502481375295824996131415160434731603866004214708454239049536562132986} a^{12} - \frac{1461375036428214030140853288629641226224332618225688483740289753714793288638640555728658935749915}{4085494656622811385072805257502481375295824996131415160434731603866004214708454239049536562132986} a^{11} + \frac{1084811800540083889329065704554865969979240527378306033354036883478958012188490588148835397736481}{4085494656622811385072805257502481375295824996131415160434731603866004214708454239049536562132986} a^{10} - \frac{1708897705052340871229058752727236687955055623375081293807300016017041771076059671412129463291155}{4085494656622811385072805257502481375295824996131415160434731603866004214708454239049536562132986} a^{9} + \frac{1539367144047687392600464155901675988713906493435217313104608441230221499388175497027831767401319}{4085494656622811385072805257502481375295824996131415160434731603866004214708454239049536562132986} a^{8} + \frac{1939510897230014822147944650905592546225566053777536066133927976379506941701884016647472672128291}{4085494656622811385072805257502481375295824996131415160434731603866004214708454239049536562132986} a^{7} + \frac{1726382877735798243412804101738394119743055769429893464008290184183498420128873353099151805614201}{4085494656622811385072805257502481375295824996131415160434731603866004214708454239049536562132986} a^{6} + \frac{316156256403930031764794292498164563054951000193666763363371908366749133047336546732797927445552}{2042747328311405692536402628751240687647912498065707580217365801933002107354227119524768281066493} a^{5} - \frac{510959253485318986206639138534068510948331518616823208522532887236004615757480939658749151824455}{2042747328311405692536402628751240687647912498065707580217365801933002107354227119524768281066493} a^{4} + \frac{487794950048967274393329193666518792477174955259775146366144566102378322413893981404550340664497}{2042747328311405692536402628751240687647912498065707580217365801933002107354227119524768281066493} a^{3} + \frac{966519356841621053815719698073240410746047532845925437305744564048810832505789996427174681424603}{2042747328311405692536402628751240687647912498065707580217365801933002107354227119524768281066493} a^{2} - \frac{843960871700334734796380418312424516124208167519396114870442290177985607019723100590506603367691}{2042747328311405692536402628751240687647912498065707580217365801933002107354227119524768281066493} a + \frac{696536747174863304197648003231409784359100033101919487298671042620419806915518906743331777186480}{2042747328311405692536402628751240687647912498065707580217365801933002107354227119524768281066493}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 287055699384000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5878656 |
| The 84 conjugacy class representatives for t21n135 are not computed |
| Character table for t21n135 is not computed |
Intermediate fields
| 7.7.670188544.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.8 | $x^{4} + 4 x + 2$ | $4$ | $1$ | $8$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ |
| 2.8.22.136 | $x^{8} + 4 x^{7} + 4 x^{2} + 14$ | $8$ | $1$ | $22$ | $\textrm{GL(2,3)}$ | $[8/3, 8/3, 7/2]_{3}^{2}$ | |
| 2.9.8.1 | $x^{9} - 2$ | $9$ | $1$ | $8$ | $(C_9:C_3):C_2$ | $[\ ]_{9}^{6}$ | |
| 37 | Data not computed | ||||||
| 809 | Data not computed | ||||||
| 2719 | Data not computed | ||||||
| 684904123 | Data not computed | ||||||