Normalized defining polynomial
\( x^{21} - 7 x^{20} - 21 x^{19} + 238 x^{18} - 245 x^{17} - 1848 x^{16} + 4732 x^{15} + 1861 x^{14} - 18536 x^{13} + 16856 x^{12} + 14819 x^{11} - 32431 x^{10} + 8897 x^{9} + 16660 x^{8} - 13533 x^{7} + 392 x^{6} + 3514 x^{5} - 1547 x^{4} + 161 x^{3} + 49 x^{2} - 14 x + 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(289519088236998333905056353746944=2^{18}\cdot 7^{32}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2339} a^{18} + \frac{637}{2339} a^{17} + \frac{241}{2339} a^{16} - \frac{264}{2339} a^{15} - \frac{258}{2339} a^{14} + \frac{983}{2339} a^{13} + \frac{1149}{2339} a^{12} - \frac{300}{2339} a^{11} + \frac{406}{2339} a^{10} - \frac{668}{2339} a^{9} + \frac{652}{2339} a^{8} - \frac{1072}{2339} a^{7} + \frac{595}{2339} a^{6} + \frac{1044}{2339} a^{5} + \frac{139}{2339} a^{4} + \frac{181}{2339} a^{3} - \frac{472}{2339} a^{2} - \frac{655}{2339} a + \frac{1}{2339}$, $\frac{1}{423359} a^{19} - \frac{90}{423359} a^{18} + \frac{168672}{423359} a^{17} + \frac{42056}{423359} a^{16} - \frac{9484}{423359} a^{15} - \frac{87453}{423359} a^{14} + \frac{44344}{423359} a^{13} - \frac{61414}{423359} a^{12} + \frac{131963}{423359} a^{11} + \frac{15257}{423359} a^{10} - \frac{93784}{423359} a^{9} + \frac{177505}{423359} a^{8} + \frac{33798}{423359} a^{7} + \frac{8211}{423359} a^{6} - \frac{108607}{423359} a^{5} + \frac{196181}{423359} a^{4} + \frac{66756}{423359} a^{3} - \frac{186125}{423359} a^{2} + \frac{85573}{423359} a + \frac{127918}{423359}$, $\frac{1}{76627979} a^{20} + \frac{42}{76627979} a^{19} + \frac{2037}{76627979} a^{18} + \frac{37611396}{76627979} a^{17} - \frac{9316020}{76627979} a^{16} + \frac{1413669}{76627979} a^{15} - \frac{25339255}{76627979} a^{14} + \frac{38252353}{76627979} a^{13} - \frac{25758478}{76627979} a^{12} - \frac{489695}{76627979} a^{11} - \frac{13070823}{76627979} a^{10} + \frac{29787302}{76627979} a^{9} + \frac{3425767}{76627979} a^{8} + \frac{27694924}{76627979} a^{7} - \frac{4738744}{76627979} a^{6} + \frac{18194259}{76627979} a^{5} - \frac{23066632}{76627979} a^{4} + \frac{22527553}{76627979} a^{3} + \frac{721866}{76627979} a^{2} + \frac{31079792}{76627979} a + \frac{18000498}{76627979}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3144548714.36 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 21 |
| The 5 conjugacy class representatives for $C_7:C_3$ |
| Character table for $C_7:C_3$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 7.7.18078415936.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.7.18078415936.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||