Normalized defining polynomial
\( x^{21} - 2 x^{20} - 62 x^{19} + 135 x^{18} + 1525 x^{17} - 3786 x^{16} - 18845 x^{15} + 56171 x^{14} + 116749 x^{13} - 468489 x^{12} - 238467 x^{11} + 2137623 x^{10} - 1003737 x^{9} - 4536095 x^{8} + 5830445 x^{7} + 1467637 x^{6} - 7366310 x^{5} + 5357467 x^{4} - 1250551 x^{3} - 188374 x^{2} + 118116 x - 11087 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(264281891642047276904710624389705471956890680461868233887744=2^{12}\cdot 7^{14}\cdot 13^{2}\cdot 83^{2}\cdot 757^{2}\cdot 3375499^{2}\cdot 3537627827^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $675.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13, 83, 757, 3375499, 3537627827$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{3}$, $\frac{1}{104} a^{18} + \frac{3}{104} a^{17} - \frac{3}{26} a^{16} - \frac{7}{104} a^{15} - \frac{11}{104} a^{14} + \frac{1}{26} a^{13} - \frac{1}{8} a^{12} - \frac{15}{104} a^{11} - \frac{21}{104} a^{10} + \frac{3}{26} a^{9} + \frac{3}{104} a^{8} - \frac{25}{104} a^{7} - \frac{9}{104} a^{6} - \frac{1}{26} a^{5} + \frac{21}{104} a^{4} - \frac{1}{104} a^{3} + \frac{4}{13} a^{2} - \frac{47}{104} a - \frac{23}{104}$, $\frac{1}{11913285904} a^{19} + \frac{6569663}{2978321476} a^{18} - \frac{1436873507}{11913285904} a^{17} + \frac{76696817}{916406608} a^{16} - \frac{102533851}{5956642952} a^{15} - \frac{1473191351}{11913285904} a^{14} + \frac{807794847}{11913285904} a^{13} - \frac{161257379}{1489160738} a^{12} + \frac{892934161}{5956642952} a^{11} - \frac{217847921}{11913285904} a^{10} - \frac{1343593203}{11913285904} a^{9} + \frac{1465114259}{5956642952} a^{8} + \frac{1442981201}{5956642952} a^{7} - \frac{2027679825}{11913285904} a^{6} + \frac{3978692893}{11913285904} a^{5} + \frac{194934559}{744580369} a^{4} + \frac{5450213729}{11913285904} a^{3} - \frac{2778202003}{11913285904} a^{2} + \frac{204306745}{5956642952} a + \frac{4261716701}{11913285904}$, $\frac{1}{17740797628805637152} a^{20} + \frac{13139325}{17740797628805637152} a^{19} + \frac{172641887734213}{17740797628805637152} a^{18} + \frac{1005659878596774309}{8870398814402818576} a^{17} - \frac{482849170140575805}{17740797628805637152} a^{16} + \frac{113077965640195427}{17740797628805637152} a^{15} - \frac{157296768005649347}{2217599703600704644} a^{14} - \frac{1042476644789527845}{17740797628805637152} a^{13} + \frac{1064139306321120973}{8870398814402818576} a^{12} + \frac{3486636319712656029}{17740797628805637152} a^{11} + \frac{9078438226867899}{85292296292334794} a^{10} + \frac{1745927049666941655}{17740797628805637152} a^{9} - \frac{511366433825903663}{2217599703600704644} a^{8} + \frac{2424719701373491337}{17740797628805637152} a^{7} - \frac{254721384066592237}{4435199407201409288} a^{6} - \frac{2669112422030903167}{17740797628805637152} a^{5} + \frac{479752482803855281}{17740797628805637152} a^{4} + \frac{9374885010759509}{8870398814402818576} a^{3} - \frac{7097183688470159489}{17740797628805637152} a^{2} - \frac{7524152246707426173}{17740797628805637152} a - \frac{7734580581847419439}{17740797628805637152}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 197138673304000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 48009024000 |
| The 267 conjugacy class representatives for t21n153 are not computed |
| Character table for t21n153 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 45 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | $21$ | R | $21$ | R | $15{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | $21$ | $15{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ | $21$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.12.12.31 | $x^{12} + 4 x^{11} - 6 x^{10} + 8 x^{9} - 4 x^{8} + 8 x^{7} - 4 x^{6} + 4 x^{5} - 4 x^{4} + 8 x + 8$ | $4$ | $3$ | $12$ | 12T205 | $[4/3, 4/3, 4/3, 4/3, 4/3, 4/3]_{3}^{6}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.5.0.1 | $x^{5} - 2 x + 6$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 83 | Data not computed | ||||||
| 757 | Data not computed | ||||||
| 3375499 | Data not computed | ||||||
| 3537627827 | Data not computed | ||||||