Normalized defining polynomial
\( x^{21} - x^{20} - 43 x^{19} + 38 x^{18} + 726 x^{17} - 563 x^{16} - 6224 x^{15} + 4226 x^{14} + 29487 x^{13} - 17408 x^{12} - 78852 x^{11} + 40272 x^{10} + 115576 x^{9} - 51908 x^{8} - 84389 x^{7} + 35680 x^{6} + 24314 x^{5} - 10479 x^{4} - 699 x^{3} + 279 x^{2} + 5 x - 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24784147696206024568626130820393680896=2^{14}\cdot 3^{3}\cdot 37^{7}\cdot 8388019^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37, 8388019$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{7610149542741154763253960510619573} a^{20} + \frac{1693585950565123332770186813570849}{7610149542741154763253960510619573} a^{19} + \frac{844273639537240920420674329385833}{7610149542741154763253960510619573} a^{18} + \frac{3694496678124499934357642597458282}{7610149542741154763253960510619573} a^{17} - \frac{2018547925608802584479754391553496}{7610149542741154763253960510619573} a^{16} + \frac{1108919828610947025638282020007334}{7610149542741154763253960510619573} a^{15} - \frac{2140668540939742071898021901233638}{7610149542741154763253960510619573} a^{14} - \frac{1623240257862182963088343704932992}{7610149542741154763253960510619573} a^{13} + \frac{1142628607839540070016368406856355}{7610149542741154763253960510619573} a^{12} + \frac{2720755351596531593809958093448173}{7610149542741154763253960510619573} a^{11} + \frac{692473541770248540386719421577825}{7610149542741154763253960510619573} a^{10} + \frac{3621818448226135008836790937480559}{7610149542741154763253960510619573} a^{9} - \frac{1261917130584545384782680617257187}{7610149542741154763253960510619573} a^{8} - \frac{102999449424459200783386374028909}{7610149542741154763253960510619573} a^{7} + \frac{2818953819550567591935934176335815}{7610149542741154763253960510619573} a^{6} - \frac{511384363406203714007955960314458}{7610149542741154763253960510619573} a^{5} - \frac{950364929116684230217362300335976}{7610149542741154763253960510619573} a^{4} + \frac{2323353265296017063854725705481988}{7610149542741154763253960510619573} a^{3} + \frac{3629475608443813114013989154594827}{7610149542741154763253960510619573} a^{2} - \frac{3713379071304946520326275446048158}{7610149542741154763253960510619573} a + \frac{2752472856126131485267852605080601}{7610149542741154763253960510619573}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 826747483559 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30240 |
| The 45 conjugacy class representatives for t21n74 |
| Character table for t21n74 is not computed |
Intermediate fields
| 3.3.148.1, 7.7.25164057.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | $15{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 37 | Data not computed | ||||||
| 8388019 | Data not computed | ||||||