Normalized defining polynomial
\( x^{21} - 7 x^{20} - 30 x^{19} + 276 x^{18} + 229 x^{17} - 4177 x^{16} + 958 x^{15} + 31524 x^{14} - 22008 x^{13} - 128130 x^{12} + 119206 x^{11} + 284832 x^{10} - 294144 x^{9} - 344214 x^{8} + 353470 x^{7} + 228416 x^{6} - 201861 x^{5} - 81891 x^{4} + 44564 x^{3} + 13672 x^{2} - 457 x - 221 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(246696137770519024549261686620317576855552=2^{20}\cdot 37^{7}\cdot 11633^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 11633$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{16} - \frac{1}{4}$, $\frac{1}{4} a^{17} - \frac{1}{4} a$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{19} - \frac{1}{8} a^{18} - \frac{1}{8} a^{17} - \frac{1}{8} a^{16} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{8} a^{3} + \frac{3}{8} a^{2} - \frac{1}{8} a - \frac{1}{8}$, $\frac{1}{1398032605892888791710733646498072} a^{20} + \frac{55913034601725474308715693569}{2668001156284138915478499325378} a^{19} + \frac{33191389580182887990063127471015}{699016302946444395855366823249036} a^{18} + \frac{20571455640666224819603635578661}{699016302946444395855366823249036} a^{17} - \frac{69640344987794525271458568394091}{1398032605892888791710733646498072} a^{16} - \frac{18139807965901088030906014751940}{174754075736611098963841705812259} a^{15} - \frac{54329162490615369337833485920715}{699016302946444395855366823249036} a^{14} - \frac{41174957088961059351380780878411}{699016302946444395855366823249036} a^{13} + \frac{105237920699396892717433332400839}{699016302946444395855366823249036} a^{12} + \frac{38706580861065862224358850493300}{174754075736611098963841705812259} a^{11} - \frac{127390791188849825765156056143433}{699016302946444395855366823249036} a^{10} - \frac{46350359632409123429970661451595}{699016302946444395855366823249036} a^{9} + \frac{59987477203479715559721858073327}{699016302946444395855366823249036} a^{8} - \frac{12294453707496441734066917309926}{174754075736611098963841705812259} a^{7} - \frac{336338707329988599343876631209137}{699016302946444395855366823249036} a^{6} + \frac{46782402075619680171230122844387}{699016302946444395855366823249036} a^{5} - \frac{2256812827588717885861820706099}{5197147233802560563980422477688} a^{4} - \frac{113912548587912224233951705628899}{349508151473222197927683411624518} a^{3} - \frac{1754680402315476649613171932037}{349508151473222197927683411624518} a^{2} - \frac{84790546771284722942594735920463}{349508151473222197927683411624518} a - \frac{462570515981878925293826411588339}{1398032605892888791710733646498072}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 212873386944000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15120 |
| The 27 conjugacy class representatives for t21n57 |
| Character table for t21n57 is not computed |
Intermediate fields
| 3.3.148.1, 7.7.8660908096.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | $21$ | $21$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | R | $15{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | $21$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 37 | Data not computed | ||||||
| 11633 | Data not computed | ||||||