Properties

Label 21.21.240...312.1
Degree $21$
Signature $[21, 0]$
Discriminant $2.407\times 10^{33}$
Root discriminant \(38.87\)
Ramified primes $2,7,31$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $F_7$ (as 21T4)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^21 - 2*x^20 - 32*x^19 + 51*x^18 + 432*x^17 - 473*x^16 - 3214*x^15 + 1767*x^14 + 14108*x^13 - 305*x^12 - 35382*x^11 - 15763*x^10 + 43350*x^9 + 37753*x^8 - 14531*x^7 - 24311*x^6 - 2788*x^5 + 4492*x^4 + 1052*x^3 - 276*x^2 - 56*x + 8)
 
Copy content gp:K = bnfinit(y^21 - 2*y^20 - 32*y^19 + 51*y^18 + 432*y^17 - 473*y^16 - 3214*y^15 + 1767*y^14 + 14108*y^13 - 305*y^12 - 35382*y^11 - 15763*y^10 + 43350*y^9 + 37753*y^8 - 14531*y^7 - 24311*y^6 - 2788*y^5 + 4492*y^4 + 1052*y^3 - 276*y^2 - 56*y + 8, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 2*x^20 - 32*x^19 + 51*x^18 + 432*x^17 - 473*x^16 - 3214*x^15 + 1767*x^14 + 14108*x^13 - 305*x^12 - 35382*x^11 - 15763*x^10 + 43350*x^9 + 37753*x^8 - 14531*x^7 - 24311*x^6 - 2788*x^5 + 4492*x^4 + 1052*x^3 - 276*x^2 - 56*x + 8);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^21 - 2*x^20 - 32*x^19 + 51*x^18 + 432*x^17 - 473*x^16 - 3214*x^15 + 1767*x^14 + 14108*x^13 - 305*x^12 - 35382*x^11 - 15763*x^10 + 43350*x^9 + 37753*x^8 - 14531*x^7 - 24311*x^6 - 2788*x^5 + 4492*x^4 + 1052*x^3 - 276*x^2 - 56*x + 8)
 

\( x^{21} - 2 x^{20} - 32 x^{19} + 51 x^{18} + 432 x^{17} - 473 x^{16} - 3214 x^{15} + 1767 x^{14} + \cdots + 8 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $21$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[21, 0]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(2406787169604002863343075235725312\) \(\medspace = 2^{27}\cdot 7^{14}\cdot 31^{9}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(38.87\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}7^{2/3}31^{1/2}\approx 57.626803948274514$
Ramified primes:   \(2\), \(7\), \(31\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q(\sqrt{62}) \)
$\Aut(K/\Q)$:   $C_3$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{12}-\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{15}-\frac{1}{2}a^{13}-\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{16}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{17}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{18}-\frac{1}{2}a^{4}$, $\frac{1}{4}a^{19}-\frac{1}{4}a^{16}-\frac{1}{4}a^{14}-\frac{1}{2}a^{13}-\frac{1}{4}a^{12}-\frac{1}{4}a^{10}-\frac{1}{2}a^{9}+\frac{1}{4}a^{8}-\frac{1}{2}a^{7}+\frac{1}{4}a^{6}+\frac{1}{4}a^{5}-\frac{1}{4}a^{4}$, $\frac{1}{10\cdots 12}a^{20}-\frac{7949774923281}{10\cdots 12}a^{19}+\frac{12715609328879}{269894553023353}a^{18}+\frac{184189865438001}{10\cdots 12}a^{17}-\frac{84175519522045}{10\cdots 12}a^{16}-\frac{21304611023181}{10\cdots 12}a^{15}-\frac{227835955447891}{10\cdots 12}a^{14}-\frac{5738938604513}{25106470048684}a^{13}+\frac{449140295544647}{10\cdots 12}a^{12}-\frac{40692109083229}{10\cdots 12}a^{11}+\frac{125643006466249}{10\cdots 12}a^{10}+\frac{466747363165087}{10\cdots 12}a^{9}+\frac{143955032155503}{10\cdots 12}a^{8}-\frac{395339627893689}{10\cdots 12}a^{7}+\frac{6779693814587}{539789106046706}a^{6}+\frac{85957087125313}{539789106046706}a^{5}+\frac{506684194022259}{10\cdots 12}a^{4}-\frac{8811130171145}{539789106046706}a^{3}+\frac{120217707214026}{269894553023353}a^{2}-\frac{63940930981172}{269894553023353}a+\frac{80943118923147}{269894553023353}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $20$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{7886249775825}{302487590948}a^{20}-\frac{21396779684043}{302487590948}a^{19}-\frac{118578700243223}{151243795474}a^{18}+\frac{571577089820901}{302487590948}a^{17}+\frac{30\cdots 85}{302487590948}a^{16}-\frac{58\cdots 39}{302487590948}a^{15}-\frac{21\cdots 59}{302487590948}a^{14}+\frac{29\cdots 55}{302487590948}a^{13}+\frac{90\cdots 99}{302487590948}a^{12}-\frac{67\cdots 39}{302487590948}a^{11}-\frac{23\cdots 95}{302487590948}a^{10}+\frac{41\cdots 21}{302487590948}a^{9}+\frac{31\cdots 63}{302487590948}a^{8}+\frac{73\cdots 41}{302487590948}a^{7}-\frac{83\cdots 77}{151243795474}a^{6}-\frac{35\cdots 15}{151243795474}a^{5}+\frac{29\cdots 93}{302487590948}a^{4}+\frac{35\cdots 24}{75621897737}a^{3}-\frac{989343207867421}{151243795474}a^{2}-\frac{182143529681500}{75621897737}a+\frac{21517905640571}{75621897737}$, $\frac{7886249775825}{302487590948}a^{20}-\frac{21396779684043}{302487590948}a^{19}-\frac{118578700243223}{151243795474}a^{18}+\frac{571577089820901}{302487590948}a^{17}+\frac{30\cdots 85}{302487590948}a^{16}-\frac{58\cdots 39}{302487590948}a^{15}-\frac{21\cdots 59}{302487590948}a^{14}+\frac{29\cdots 55}{302487590948}a^{13}+\frac{90\cdots 99}{302487590948}a^{12}-\frac{67\cdots 39}{302487590948}a^{11}-\frac{23\cdots 95}{302487590948}a^{10}+\frac{41\cdots 21}{302487590948}a^{9}+\frac{31\cdots 63}{302487590948}a^{8}+\frac{73\cdots 41}{302487590948}a^{7}-\frac{83\cdots 77}{151243795474}a^{6}-\frac{35\cdots 15}{151243795474}a^{5}+\frac{29\cdots 93}{302487590948}a^{4}+\frac{35\cdots 24}{75621897737}a^{3}-\frac{989343207867421}{151243795474}a^{2}-\frac{182143529681500}{75621897737}a+\frac{21593527538308}{75621897737}$, $\frac{21\cdots 37}{10\cdots 12}a^{20}-\frac{14\cdots 01}{269894553023353}a^{19}-\frac{31\cdots 25}{539789106046706}a^{18}+\frac{15\cdots 79}{10\cdots 12}a^{17}+\frac{40\cdots 91}{539789106046706}a^{16}-\frac{15\cdots 61}{10\cdots 12}a^{15}-\frac{28\cdots 85}{539789106046706}a^{14}+\frac{18\cdots 37}{25106470048684}a^{13}+\frac{60\cdots 04}{269894553023353}a^{12}-\frac{18\cdots 37}{10\cdots 12}a^{11}-\frac{30\cdots 95}{539789106046706}a^{10}+\frac{11\cdots 05}{10\cdots 12}a^{9}+\frac{41\cdots 99}{539789106046706}a^{8}+\frac{19\cdots 01}{10\cdots 12}a^{7}-\frac{44\cdots 71}{10\cdots 12}a^{6}-\frac{18\cdots 97}{10\cdots 12}a^{5}+\frac{39\cdots 47}{539789106046706}a^{4}+\frac{94\cdots 87}{269894553023353}a^{3}-\frac{26\cdots 33}{539789106046706}a^{2}-\frac{48\cdots 11}{269894553023353}a+\frac{58\cdots 34}{269894553023353}$, $\frac{9342976803487}{151243795474}a^{20}-\frac{12764982886622}{75621897737}a^{19}-\frac{280241039373715}{151243795474}a^{18}+\frac{681655210710877}{151243795474}a^{17}+\frac{35\cdots 11}{151243795474}a^{16}-\frac{70\cdots 33}{151243795474}a^{15}-\frac{12\cdots 59}{75621897737}a^{14}+\frac{34\cdots 35}{151243795474}a^{13}+\frac{53\cdots 62}{75621897737}a^{12}-\frac{80\cdots 23}{151243795474}a^{11}-\frac{13\cdots 73}{75621897737}a^{10}+\frac{51\cdots 31}{151243795474}a^{9}+\frac{18\cdots 79}{75621897737}a^{8}+\frac{84\cdots 25}{151243795474}a^{7}-\frac{19\cdots 25}{151243795474}a^{6}-\frac{83\cdots 17}{151243795474}a^{5}+\frac{34\cdots 61}{151243795474}a^{4}+\frac{83\cdots 85}{75621897737}a^{3}-\frac{23\cdots 67}{151243795474}a^{2}-\frac{428524642333825}{75621897737}a+\frac{50944432924518}{75621897737}$, $\frac{15\cdots 49}{10\cdots 12}a^{20}-\frac{41\cdots 43}{10\cdots 12}a^{19}-\frac{11\cdots 97}{269894553023353}a^{18}+\frac{11\cdots 27}{10\cdots 12}a^{17}+\frac{58\cdots 19}{10\cdots 12}a^{16}-\frac{11\cdots 91}{10\cdots 12}a^{15}-\frac{41\cdots 05}{10\cdots 12}a^{14}+\frac{13\cdots 57}{25106470048684}a^{13}+\frac{17\cdots 41}{10\cdots 12}a^{12}-\frac{13\cdots 35}{10\cdots 12}a^{11}-\frac{45\cdots 13}{10\cdots 12}a^{10}+\frac{84\cdots 01}{10\cdots 12}a^{9}+\frac{61\cdots 97}{10\cdots 12}a^{8}+\frac{13\cdots 73}{10\cdots 12}a^{7}-\frac{82\cdots 22}{269894553023353}a^{6}-\frac{68\cdots 41}{539789106046706}a^{5}+\frac{58\cdots 37}{10\cdots 12}a^{4}+\frac{13\cdots 03}{539789106046706}a^{3}-\frac{19\cdots 77}{539789106046706}a^{2}-\frac{35\cdots 60}{269894553023353}a+\frac{42\cdots 95}{269894553023353}$, $\frac{10\cdots 47}{539789106046706}a^{20}-\frac{56\cdots 81}{10\cdots 12}a^{19}-\frac{30\cdots 07}{539789106046706}a^{18}+\frac{37\cdots 41}{269894553023353}a^{17}+\frac{77\cdots 11}{10\cdots 12}a^{16}-\frac{38\cdots 57}{269894553023353}a^{15}-\frac{54\cdots 81}{10\cdots 12}a^{14}+\frac{88\cdots 29}{12553235024342}a^{13}+\frac{23\cdots 47}{10\cdots 12}a^{12}-\frac{44\cdots 96}{269894553023353}a^{11}-\frac{59\cdots 01}{10\cdots 12}a^{10}+\frac{55\cdots 53}{539789106046706}a^{9}+\frac{80\cdots 81}{10\cdots 12}a^{8}+\frac{93\cdots 71}{539789106046706}a^{7}-\frac{43\cdots 53}{10\cdots 12}a^{6}-\frac{18\cdots 53}{10\cdots 12}a^{5}+\frac{75\cdots 05}{10\cdots 12}a^{4}+\frac{92\cdots 90}{269894553023353}a^{3}-\frac{12\cdots 92}{269894553023353}a^{2}-\frac{47\cdots 72}{269894553023353}a+\frac{56\cdots 54}{269894553023353}$, $\frac{18\cdots 43}{539789106046706}a^{20}-\frac{98\cdots 19}{10\cdots 12}a^{19}-\frac{55\cdots 49}{539789106046706}a^{18}+\frac{65\cdots 10}{269894553023353}a^{17}+\frac{14\cdots 77}{10\cdots 12}a^{16}-\frac{67\cdots 07}{269894553023353}a^{15}-\frac{10\cdots 93}{10\cdots 12}a^{14}+\frac{15\cdots 29}{12553235024342}a^{13}+\frac{43\cdots 99}{10\cdots 12}a^{12}-\frac{76\cdots 42}{269894553023353}a^{11}-\frac{11\cdots 01}{10\cdots 12}a^{10}+\frac{87\cdots 69}{539789106046706}a^{9}+\frac{15\cdots 29}{10\cdots 12}a^{8}+\frac{18\cdots 05}{539789106046706}a^{7}-\frac{80\cdots 17}{10\cdots 12}a^{6}-\frac{35\cdots 71}{10\cdots 12}a^{5}+\frac{14\cdots 05}{10\cdots 12}a^{4}+\frac{17\cdots 21}{269894553023353}a^{3}-\frac{48\cdots 79}{539789106046706}a^{2}-\frac{89\cdots 08}{269894553023353}a+\frac{10\cdots 71}{269894553023353}$, $\frac{23\cdots 55}{269894553023353}a^{20}-\frac{24\cdots 63}{10\cdots 12}a^{19}-\frac{69\cdots 52}{269894553023353}a^{18}+\frac{33\cdots 81}{539789106046706}a^{17}+\frac{35\cdots 49}{10\cdots 12}a^{16}-\frac{34\cdots 53}{539789106046706}a^{15}-\frac{24\cdots 29}{10\cdots 12}a^{14}+\frac{19\cdots 32}{6276617512171}a^{13}+\frac{10\cdots 35}{10\cdots 12}a^{12}-\frac{39\cdots 43}{539789106046706}a^{11}-\frac{27\cdots 81}{10\cdots 12}a^{10}+\frac{11\cdots 88}{269894553023353}a^{9}+\frac{37\cdots 49}{10\cdots 12}a^{8}+\frac{22\cdots 77}{269894553023353}a^{7}-\frac{19\cdots 19}{10\cdots 12}a^{6}-\frac{84\cdots 69}{10\cdots 12}a^{5}+\frac{34\cdots 39}{10\cdots 12}a^{4}+\frac{42\cdots 42}{269894553023353}a^{3}-\frac{11\cdots 67}{539789106046706}a^{2}-\frac{21\cdots 78}{269894553023353}a+\frac{26\cdots 41}{269894553023353}$, $\frac{51\cdots 83}{10\cdots 12}a^{20}-\frac{14\cdots 89}{10\cdots 12}a^{19}-\frac{77\cdots 47}{539789106046706}a^{18}+\frac{37\cdots 49}{10\cdots 12}a^{17}+\frac{19\cdots 17}{10\cdots 12}a^{16}-\frac{38\cdots 97}{10\cdots 12}a^{15}-\frac{13\cdots 85}{10\cdots 12}a^{14}+\frac{44\cdots 23}{25106470048684}a^{13}+\frac{59\cdots 81}{10\cdots 12}a^{12}-\frac{44\cdots 65}{10\cdots 12}a^{11}-\frac{15\cdots 21}{10\cdots 12}a^{10}+\frac{28\cdots 67}{10\cdots 12}a^{9}+\frac{20\cdots 61}{10\cdots 12}a^{8}+\frac{47\cdots 31}{10\cdots 12}a^{7}-\frac{54\cdots 63}{539789106046706}a^{6}-\frac{23\cdots 51}{539789106046706}a^{5}+\frac{19\cdots 63}{10\cdots 12}a^{4}+\frac{46\cdots 77}{539789106046706}a^{3}-\frac{32\cdots 86}{269894553023353}a^{2}-\frac{11\cdots 47}{269894553023353}a+\frac{14\cdots 57}{269894553023353}$, $\frac{33577707494391}{151243795474}a^{20}-\frac{45695072839843}{75621897737}a^{19}-\frac{504313229957035}{75621897737}a^{18}+\frac{12\cdots 48}{75621897737}a^{17}+\frac{12\cdots 93}{151243795474}a^{16}-\frac{25\cdots 25}{151243795474}a^{15}-\frac{44\cdots 41}{75621897737}a^{14}+\frac{12\cdots 61}{151243795474}a^{13}+\frac{19\cdots 51}{75621897737}a^{12}-\frac{28\cdots 33}{151243795474}a^{11}-\frac{49\cdots 26}{75621897737}a^{10}+\frac{17\cdots 73}{151243795474}a^{9}+\frac{66\cdots 04}{75621897737}a^{8}+\frac{30\cdots 73}{151243795474}a^{7}-\frac{71\cdots 69}{151243795474}a^{6}-\frac{30\cdots 57}{151243795474}a^{5}+\frac{62\cdots 16}{75621897737}a^{4}+\frac{60\cdots 01}{151243795474}a^{3}-\frac{85\cdots 99}{151243795474}a^{2}-\frac{15\cdots 92}{75621897737}a+\frac{185255262902082}{75621897737}$, $\frac{84\cdots 29}{10\cdots 12}a^{20}-\frac{57\cdots 19}{269894553023353}a^{19}-\frac{12\cdots 89}{539789106046706}a^{18}+\frac{61\cdots 45}{10\cdots 12}a^{17}+\frac{15\cdots 61}{539789106046706}a^{16}-\frac{63\cdots 81}{10\cdots 12}a^{15}-\frac{56\cdots 58}{269894553023353}a^{14}+\frac{73\cdots 13}{25106470048684}a^{13}+\frac{48\cdots 89}{539789106046706}a^{12}-\frac{72\cdots 01}{10\cdots 12}a^{11}-\frac{61\cdots 94}{269894553023353}a^{10}+\frac{46\cdots 29}{10\cdots 12}a^{9}+\frac{82\cdots 25}{269894553023353}a^{8}+\frac{75\cdots 73}{10\cdots 12}a^{7}-\frac{17\cdots 57}{10\cdots 12}a^{6}-\frac{74\cdots 21}{10\cdots 12}a^{5}+\frac{78\cdots 42}{269894553023353}a^{4}+\frac{75\cdots 65}{539789106046706}a^{3}-\frac{53\cdots 47}{269894553023353}a^{2}-\frac{19\cdots 70}{269894553023353}a+\frac{23\cdots 93}{269894553023353}$, $\frac{46\cdots 49}{10\cdots 12}a^{20}-\frac{69\cdots 87}{539789106046706}a^{19}-\frac{33\cdots 11}{269894553023353}a^{18}+\frac{37\cdots 87}{10\cdots 12}a^{17}+\frac{82\cdots 85}{539789106046706}a^{16}-\frac{38\cdots 11}{10\cdots 12}a^{15}-\frac{56\cdots 49}{539789106046706}a^{14}+\frac{44\cdots 71}{25106470048684}a^{13}+\frac{11\cdots 20}{269894553023353}a^{12}-\frac{46\cdots 15}{10\cdots 12}a^{11}-\frac{59\cdots 99}{539789106046706}a^{10}+\frac{40\cdots 87}{10\cdots 12}a^{9}+\frac{81\cdots 63}{539789106046706}a^{8}+\frac{21\cdots 99}{10\cdots 12}a^{7}-\frac{88\cdots 47}{10\cdots 12}a^{6}-\frac{30\cdots 93}{10\cdots 12}a^{5}+\frac{40\cdots 04}{269894553023353}a^{4}+\frac{31\cdots 85}{539789106046706}a^{3}-\frac{58\cdots 21}{539789106046706}a^{2}-\frac{82\cdots 99}{269894553023353}a+\frac{10\cdots 15}{269894553023353}$, $\frac{47\cdots 25}{539789106046706}a^{20}-\frac{12\cdots 59}{539789106046706}a^{19}-\frac{71\cdots 58}{269894553023353}a^{18}+\frac{34\cdots 83}{539789106046706}a^{17}+\frac{89\cdots 80}{269894553023353}a^{16}-\frac{17\cdots 79}{269894553023353}a^{15}-\frac{63\cdots 17}{269894553023353}a^{14}+\frac{20\cdots 10}{6276617512171}a^{13}+\frac{27\cdots 67}{269894553023353}a^{12}-\frac{20\cdots 51}{269894553023353}a^{11}-\frac{68\cdots 80}{269894553023353}a^{10}+\frac{12\cdots 78}{269894553023353}a^{9}+\frac{93\cdots 68}{269894553023353}a^{8}+\frac{21\cdots 94}{269894553023353}a^{7}-\frac{99\cdots 27}{539789106046706}a^{6}-\frac{42\cdots 79}{539789106046706}a^{5}+\frac{87\cdots 29}{269894553023353}a^{4}+\frac{85\cdots 63}{539789106046706}a^{3}-\frac{59\cdots 17}{269894553023353}a^{2}-\frac{21\cdots 99}{269894553023353}a+\frac{25\cdots 65}{269894553023353}$, $\frac{65\cdots 21}{539789106046706}a^{20}-\frac{17\cdots 07}{539789106046706}a^{19}-\frac{19\cdots 55}{539789106046706}a^{18}+\frac{23\cdots 68}{269894553023353}a^{17}+\frac{24\cdots 11}{539789106046706}a^{16}-\frac{48\cdots 65}{539789106046706}a^{15}-\frac{17\cdots 27}{539789106046706}a^{14}+\frac{55\cdots 43}{12553235024342}a^{13}+\frac{74\cdots 17}{539789106046706}a^{12}-\frac{55\cdots 21}{539789106046706}a^{11}-\frac{19\cdots 67}{539789106046706}a^{10}+\frac{34\cdots 71}{539789106046706}a^{9}+\frac{25\cdots 89}{539789106046706}a^{8}+\frac{60\cdots 75}{539789106046706}a^{7}-\frac{68\cdots 83}{269894553023353}a^{6}-\frac{29\cdots 48}{269894553023353}a^{5}+\frac{12\cdots 15}{269894553023353}a^{4}+\frac{11\cdots 29}{539789106046706}a^{3}-\frac{82\cdots 53}{269894553023353}a^{2}-\frac{30\cdots 72}{269894553023353}a+\frac{36\cdots 69}{269894553023353}$, $\frac{36\cdots 77}{539789106046706}a^{20}-\frac{20\cdots 21}{10\cdots 12}a^{19}-\frac{54\cdots 68}{269894553023353}a^{18}+\frac{13\cdots 62}{269894553023353}a^{17}+\frac{27\cdots 01}{10\cdots 12}a^{16}-\frac{27\cdots 91}{539789106046706}a^{15}-\frac{19\cdots 53}{10\cdots 12}a^{14}+\frac{15\cdots 94}{6276617512171}a^{13}+\frac{82\cdots 91}{10\cdots 12}a^{12}-\frac{32\cdots 31}{539789106046706}a^{11}-\frac{21\cdots 13}{10\cdots 12}a^{10}+\frac{10\cdots 35}{269894553023353}a^{9}+\frac{28\cdots 25}{10\cdots 12}a^{8}+\frac{15\cdots 20}{269894553023353}a^{7}-\frac{15\cdots 05}{10\cdots 12}a^{6}-\frac{63\cdots 71}{10\cdots 12}a^{5}+\frac{26\cdots 03}{10\cdots 12}a^{4}+\frac{63\cdots 35}{539789106046706}a^{3}-\frac{91\cdots 31}{539789106046706}a^{2}-\frac{16\cdots 62}{269894553023353}a+\frac{19\cdots 55}{269894553023353}$, $\frac{19\cdots 63}{10\cdots 12}a^{20}-\frac{53\cdots 29}{10\cdots 12}a^{19}-\frac{14\cdots 64}{269894553023353}a^{18}+\frac{14\cdots 69}{10\cdots 12}a^{17}+\frac{72\cdots 21}{10\cdots 12}a^{16}-\frac{14\cdots 37}{10\cdots 12}a^{15}-\frac{51\cdots 21}{10\cdots 12}a^{14}+\frac{16\cdots 19}{25106470048684}a^{13}+\frac{21\cdots 53}{10\cdots 12}a^{12}-\frac{16\cdots 17}{10\cdots 12}a^{11}-\frac{55\cdots 77}{10\cdots 12}a^{10}+\frac{10\cdots 83}{10\cdots 12}a^{9}+\frac{75\cdots 81}{10\cdots 12}a^{8}+\frac{17\cdots 31}{10\cdots 12}a^{7}-\frac{20\cdots 19}{539789106046706}a^{6}-\frac{85\cdots 45}{539789106046706}a^{5}+\frac{70\cdots 05}{10\cdots 12}a^{4}+\frac{17\cdots 35}{539789106046706}a^{3}-\frac{11\cdots 30}{269894553023353}a^{2}-\frac{43\cdots 28}{269894553023353}a+\frac{50\cdots 16}{269894553023353}$, $\frac{24\cdots 65}{10\cdots 12}a^{20}-\frac{67\cdots 67}{10\cdots 12}a^{19}-\frac{37\cdots 93}{539789106046706}a^{18}+\frac{18\cdots 37}{10\cdots 12}a^{17}+\frac{94\cdots 07}{10\cdots 12}a^{16}-\frac{18\cdots 33}{10\cdots 12}a^{15}-\frac{66\cdots 91}{10\cdots 12}a^{14}+\frac{21\cdots 35}{25106470048684}a^{13}+\frac{28\cdots 43}{10\cdots 12}a^{12}-\frac{21\cdots 89}{10\cdots 12}a^{11}-\frac{72\cdots 31}{10\cdots 12}a^{10}+\frac{13\cdots 79}{10\cdots 12}a^{9}+\frac{98\cdots 47}{10\cdots 12}a^{8}+\frac{22\cdots 19}{10\cdots 12}a^{7}-\frac{26\cdots 91}{539789106046706}a^{6}-\frac{55\cdots 68}{269894553023353}a^{5}+\frac{93\cdots 29}{10\cdots 12}a^{4}+\frac{22\cdots 53}{539789106046706}a^{3}-\frac{16\cdots 88}{269894553023353}a^{2}-\frac{57\cdots 22}{269894553023353}a+\frac{69\cdots 16}{269894553023353}$, $\frac{34\cdots 67}{10\cdots 12}a^{20}-\frac{23\cdots 36}{269894553023353}a^{19}-\frac{25\cdots 50}{269894553023353}a^{18}+\frac{25\cdots 35}{10\cdots 12}a^{17}+\frac{64\cdots 83}{539789106046706}a^{16}-\frac{25\cdots 27}{10\cdots 12}a^{15}-\frac{45\cdots 51}{539789106046706}a^{14}+\frac{29\cdots 27}{25106470048684}a^{13}+\frac{96\cdots 69}{269894553023353}a^{12}-\frac{29\cdots 51}{10\cdots 12}a^{11}-\frac{49\cdots 17}{539789106046706}a^{10}+\frac{19\cdots 19}{10\cdots 12}a^{9}+\frac{66\cdots 77}{539789106046706}a^{8}+\frac{29\cdots 27}{10\cdots 12}a^{7}-\frac{71\cdots 49}{10\cdots 12}a^{6}-\frac{29\cdots 43}{10\cdots 12}a^{5}+\frac{31\cdots 38}{269894553023353}a^{4}+\frac{29\cdots 91}{539789106046706}a^{3}-\frac{43\cdots 37}{539789106046706}a^{2}-\frac{74\cdots 21}{269894553023353}a+\frac{89\cdots 85}{269894553023353}$, $\frac{11\cdots 47}{10\cdots 12}a^{20}-\frac{32\cdots 13}{10\cdots 12}a^{19}-\frac{17\cdots 97}{539789106046706}a^{18}+\frac{86\cdots 13}{10\cdots 12}a^{17}+\frac{43\cdots 51}{10\cdots 12}a^{16}-\frac{88\cdots 63}{10\cdots 12}a^{15}-\frac{30\cdots 79}{10\cdots 12}a^{14}+\frac{10\cdots 37}{25106470048684}a^{13}+\frac{13\cdots 59}{10\cdots 12}a^{12}-\frac{10\cdots 43}{10\cdots 12}a^{11}-\frac{33\cdots 15}{10\cdots 12}a^{10}+\frac{66\cdots 41}{10\cdots 12}a^{9}+\frac{44\cdots 55}{10\cdots 12}a^{8}+\frac{10\cdots 01}{10\cdots 12}a^{7}-\frac{59\cdots 20}{269894553023353}a^{6}-\frac{25\cdots 91}{269894553023353}a^{5}+\frac{41\cdots 25}{10\cdots 12}a^{4}+\frac{51\cdots 89}{269894553023353}a^{3}-\frac{67\cdots 39}{269894553023353}a^{2}-\frac{26\cdots 93}{269894553023353}a+\frac{30\cdots 16}{269894553023353}$, $\frac{22\cdots 05}{10\cdots 12}a^{20}-\frac{30\cdots 59}{539789106046706}a^{19}-\frac{16\cdots 63}{269894553023353}a^{18}+\frac{16\cdots 21}{10\cdots 12}a^{17}+\frac{41\cdots 37}{539789106046706}a^{16}-\frac{16\cdots 33}{10\cdots 12}a^{15}-\frac{29\cdots 91}{539789106046706}a^{14}+\frac{19\cdots 21}{25106470048684}a^{13}+\frac{63\cdots 68}{269894553023353}a^{12}-\frac{19\cdots 89}{10\cdots 12}a^{11}-\frac{32\cdots 35}{539789106046706}a^{10}+\frac{12\cdots 37}{10\cdots 12}a^{9}+\frac{43\cdots 81}{539789106046706}a^{8}+\frac{20\cdots 97}{10\cdots 12}a^{7}-\frac{46\cdots 43}{10\cdots 12}a^{6}-\frac{19\cdots 99}{10\cdots 12}a^{5}+\frac{20\cdots 65}{269894553023353}a^{4}+\frac{19\cdots 87}{539789106046706}a^{3}-\frac{28\cdots 77}{539789106046706}a^{2}-\frac{51\cdots 39}{269894553023353}a+\frac{61\cdots 57}{269894553023353}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 12111978767.0 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{21}\cdot(2\pi)^{0}\cdot 12111978767.0 \cdot 1}{2\cdot\sqrt{2406787169604002863343075235725312}}\cr\approx \mathstrut & 0.258878611311 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^21 - 2*x^20 - 32*x^19 + 51*x^18 + 432*x^17 - 473*x^16 - 3214*x^15 + 1767*x^14 + 14108*x^13 - 305*x^12 - 35382*x^11 - 15763*x^10 + 43350*x^9 + 37753*x^8 - 14531*x^7 - 24311*x^6 - 2788*x^5 + 4492*x^4 + 1052*x^3 - 276*x^2 - 56*x + 8) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^21 - 2*x^20 - 32*x^19 + 51*x^18 + 432*x^17 - 473*x^16 - 3214*x^15 + 1767*x^14 + 14108*x^13 - 305*x^12 - 35382*x^11 - 15763*x^10 + 43350*x^9 + 37753*x^8 - 14531*x^7 - 24311*x^6 - 2788*x^5 + 4492*x^4 + 1052*x^3 - 276*x^2 - 56*x + 8, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - 2*x^20 - 32*x^19 + 51*x^18 + 432*x^17 - 473*x^16 - 3214*x^15 + 1767*x^14 + 14108*x^13 - 305*x^12 - 35382*x^11 - 15763*x^10 + 43350*x^9 + 37753*x^8 - 14531*x^7 - 24311*x^6 - 2788*x^5 + 4492*x^4 + 1052*x^3 - 276*x^2 - 56*x + 8); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^21 - 2*x^20 - 32*x^19 + 51*x^18 + 432*x^17 - 473*x^16 - 3214*x^15 + 1767*x^14 + 14108*x^13 - 305*x^12 - 35382*x^11 - 15763*x^10 + 43350*x^9 + 37753*x^8 - 14531*x^7 - 24311*x^6 - 2788*x^5 + 4492*x^4 + 1052*x^3 - 276*x^2 - 56*x + 8); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$F_7$ (as 21T4):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 42
The 7 conjugacy class representatives for $F_7$
Character table for $F_7$

Intermediate fields

\(\Q(\zeta_{7})^+\), 7.7.36622433792.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 42
Degree 7 sibling: 7.7.36622433792.1
Degree 14 sibling: deg 14
Minimal sibling: 7.7.36622433792.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }^{3}{,}\,{\href{/padicField/3.3.0.1}{3} }$ ${\href{/padicField/5.6.0.1}{6} }^{3}{,}\,{\href{/padicField/5.3.0.1}{3} }$ R ${\href{/padicField/11.6.0.1}{6} }^{3}{,}\,{\href{/padicField/11.3.0.1}{3} }$ ${\href{/padicField/13.7.0.1}{7} }^{3}$ ${\href{/padicField/17.6.0.1}{6} }^{3}{,}\,{\href{/padicField/17.3.0.1}{3} }$ ${\href{/padicField/19.3.0.1}{3} }^{7}$ ${\href{/padicField/23.3.0.1}{3} }^{7}$ ${\href{/padicField/29.7.0.1}{7} }^{3}$ R ${\href{/padicField/37.3.0.1}{3} }^{7}$ ${\href{/padicField/41.7.0.1}{7} }^{3}$ ${\href{/padicField/43.2.0.1}{2} }^{9}{,}\,{\href{/padicField/43.1.0.1}{1} }^{3}$ ${\href{/padicField/47.6.0.1}{6} }^{3}{,}\,{\href{/padicField/47.3.0.1}{3} }$ ${\href{/padicField/53.3.0.1}{3} }^{7}$ ${\href{/padicField/59.3.0.1}{3} }^{7}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.3.1.0a1.1$x^{3} + x + 1$$1$$3$$0$$C_3$$$[\ ]^{3}$$
2.3.2.9a1.1$x^{6} + 2 x^{4} + 2 x^{3} + x^{2} + 2 x + 3$$2$$3$$9$$C_6$$$[3]^{3}$$
2.3.2.9a1.1$x^{6} + 2 x^{4} + 2 x^{3} + x^{2} + 2 x + 3$$2$$3$$9$$C_6$$$[3]^{3}$$
2.3.2.9a1.1$x^{6} + 2 x^{4} + 2 x^{3} + x^{2} + 2 x + 3$$2$$3$$9$$C_6$$$[3]^{3}$$
\(7\) Copy content Toggle raw display 7.1.3.2a1.1$x^{3} + 7$$3$$1$$2$$C_3$$$[\ ]_{3}$$
7.2.3.4a1.2$x^{6} + 18 x^{5} + 117 x^{4} + 324 x^{3} + 351 x^{2} + 162 x + 34$$3$$2$$4$$C_6$$$[\ ]_{3}^{2}$$
7.2.3.4a1.2$x^{6} + 18 x^{5} + 117 x^{4} + 324 x^{3} + 351 x^{2} + 162 x + 34$$3$$2$$4$$C_6$$$[\ ]_{3}^{2}$$
7.2.3.4a1.2$x^{6} + 18 x^{5} + 117 x^{4} + 324 x^{3} + 351 x^{2} + 162 x + 34$$3$$2$$4$$C_6$$$[\ ]_{3}^{2}$$
\(31\) Copy content Toggle raw display 31.3.1.0a1.1$x^{3} + x + 28$$1$$3$$0$$C_3$$$[\ ]^{3}$$
31.3.2.3a1.1$x^{6} + 2 x^{4} + 56 x^{3} + x^{2} + 87 x + 784$$2$$3$$3$$C_6$$$[\ ]_{2}^{3}$$
31.3.2.3a1.1$x^{6} + 2 x^{4} + 56 x^{3} + x^{2} + 87 x + 784$$2$$3$$3$$C_6$$$[\ ]_{2}^{3}$$
31.3.2.3a1.1$x^{6} + 2 x^{4} + 56 x^{3} + x^{2} + 87 x + 784$$2$$3$$3$$C_6$$$[\ ]_{2}^{3}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)