Normalized defining polynomial
\( x^{21} - 3 x^{20} - 126 x^{19} + 590 x^{18} + 4959 x^{17} - 34101 x^{16} - 40871 x^{15} + 707025 x^{14} - 962760 x^{13} - 4547872 x^{12} + 12890748 x^{11} + 5372634 x^{10} - 51667790 x^{9} + 36692820 x^{8} + 68540517 x^{7} - 110714509 x^{6} + 17089548 x^{5} + 69115944 x^{4} - 62120671 x^{3} + 23606859 x^{2} - 4317927 x + 310897 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23775269732638142813384381192164997335278189777532971313088692224=2^{18}\cdot 3^{28}\cdot 7^{15}\cdot 71^{3}\cdot 1326319793^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1162.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 71, 1326319793$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} - \frac{1}{7} a^{4} - \frac{1}{7} a^{3} - \frac{1}{7} a^{2} - \frac{1}{7} a - \frac{2}{7}$, $\frac{1}{7} a^{8} - \frac{2}{7} a^{6} - \frac{2}{7} a^{5} - \frac{2}{7} a^{4} - \frac{2}{7} a^{3} - \frac{2}{7} a^{2} - \frac{3}{7} a - \frac{2}{7}$, $\frac{1}{7} a^{9} + \frac{3}{7} a^{6} + \frac{3}{7} a^{5} + \frac{3}{7} a^{4} + \frac{3}{7} a^{3} + \frac{2}{7} a^{2} + \frac{3}{7} a + \frac{3}{7}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} - \frac{1}{7} a^{4} - \frac{2}{7} a^{3} - \frac{1}{7} a^{2} - \frac{1}{7} a - \frac{1}{7}$, $\frac{1}{7} a^{11} - \frac{2}{7} a^{6} - \frac{2}{7} a^{5} - \frac{3}{7} a^{4} - \frac{2}{7} a^{3} - \frac{2}{7} a^{2} - \frac{2}{7} a - \frac{2}{7}$, $\frac{1}{7} a^{12} + \frac{3}{7} a^{6} + \frac{2}{7} a^{5} + \frac{3}{7} a^{4} + \frac{3}{7} a^{3} + \frac{3}{7} a^{2} + \frac{3}{7} a + \frac{3}{7}$, $\frac{1}{14} a^{13} - \frac{1}{14} a^{12} - \frac{1}{14} a^{11} - \frac{1}{14} a^{10} - \frac{1}{14} a^{9} - \frac{1}{14} a^{8} - \frac{1}{14} a^{7} + \frac{5}{14} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{98} a^{14} - \frac{1}{49} a^{13} + \frac{3}{49} a^{12} - \frac{3}{49} a^{10} + \frac{1}{49} a^{9} - \frac{2}{49} a^{8} + \frac{1}{49} a^{7} + \frac{1}{49} a^{6} - \frac{3}{49} a^{5} + \frac{3}{49} a^{3} - \frac{1}{49} a^{2} + \frac{2}{49} a - \frac{3}{98}$, $\frac{1}{98} a^{15} + \frac{1}{49} a^{13} - \frac{1}{49} a^{12} - \frac{3}{49} a^{11} + \frac{2}{49} a^{10} - \frac{3}{49} a^{8} + \frac{3}{49} a^{7} + \frac{20}{49} a^{6} + \frac{22}{49} a^{5} + \frac{24}{49} a^{4} + \frac{19}{49} a^{3} + \frac{3}{7} a^{2} + \frac{47}{98} a + \frac{18}{49}$, $\frac{1}{98} a^{16} + \frac{1}{49} a^{13} - \frac{2}{49} a^{12} + \frac{2}{49} a^{11} - \frac{1}{49} a^{10} + \frac{2}{49} a^{9} - \frac{3}{49} a^{7} + \frac{6}{49} a^{6} + \frac{9}{49} a^{5} + \frac{5}{49} a^{4} + \frac{8}{49} a^{3} + \frac{9}{98} a^{2} + \frac{1}{7} a + \frac{10}{49}$, $\frac{1}{98} a^{17} + \frac{3}{49} a^{12} - \frac{1}{49} a^{11} + \frac{1}{49} a^{10} - \frac{2}{49} a^{9} + \frac{1}{49} a^{8} - \frac{3}{49} a^{7} - \frac{1}{7} a^{6} - \frac{10}{49} a^{5} - \frac{6}{49} a^{4} - \frac{17}{98} a^{3} - \frac{5}{49} a^{2} - \frac{8}{49} a - \frac{4}{49}$, $\frac{1}{98} a^{18} - \frac{1}{98} a^{13} + \frac{5}{98} a^{12} - \frac{5}{98} a^{11} + \frac{3}{98} a^{10} - \frac{5}{98} a^{9} + \frac{1}{98} a^{8} - \frac{1}{14} a^{7} + \frac{29}{98} a^{6} + \frac{23}{98} a^{5} + \frac{16}{49} a^{4} + \frac{25}{98} a^{3} + \frac{33}{98} a^{2} + \frac{27}{98} a + \frac{5}{14}$, $\frac{1}{20755224} a^{19} + \frac{13925}{2965032} a^{18} - \frac{21607}{6918408} a^{17} - \frac{10711}{2306136} a^{16} - \frac{15433}{3459204} a^{15} - \frac{13775}{3459204} a^{14} - \frac{669161}{20755224} a^{13} - \frac{4751}{391608} a^{12} - \frac{55451}{6918408} a^{11} + \frac{611}{130536} a^{10} + \frac{15161}{6918408} a^{9} + \frac{107101}{6918408} a^{8} - \frac{13895}{423576} a^{7} + \frac{860051}{20755224} a^{6} + \frac{1386541}{3459204} a^{5} + \frac{807983}{1729602} a^{4} - \frac{653791}{3459204} a^{3} + \frac{777127}{1729602} a^{2} + \frac{2984603}{20755224} a - \frac{4398071}{20755224}$, $\frac{1}{1416133176618541931985068114596416} a^{20} - \frac{2360645596998271156447325}{354033294154635482996267028649104} a^{19} + \frac{2652373603028260137508510134539}{708066588309270965992534057298208} a^{18} - \frac{160914842795094204387798819619}{59005549025772580499377838108184} a^{17} + \frac{1632456243610862073289022395501}{472044392206180643995022704865472} a^{16} + \frac{557664885090876976978229157319}{118011098051545160998755676216368} a^{15} + \frac{81626281122178546468291741139}{19945537698852703267395325557696} a^{14} - \frac{1859139787895290315880225880521}{354033294154635482996267028649104} a^{13} + \frac{6321176137552870225849280207575}{354033294154635482996267028649104} a^{12} - \frac{89985899346548403901180693949}{13112344227949462333195075135152} a^{11} + \frac{3382826172358414971982351528205}{59005549025772580499377838108184} a^{10} + \frac{11540162159466990215658869514523}{236022196103090321997511352432736} a^{9} + \frac{885470724004611278179764028795}{88508323538658870749066757162276} a^{8} - \frac{20639946656628581296149490877}{18633331271296604368224580455216} a^{7} - \frac{177503359019189299200085213183871}{1416133176618541931985068114596416} a^{6} + \frac{36248601130472274190419382111}{11239152195385253428452921544416} a^{5} - \frac{86131653715136737644537887681513}{236022196103090321997511352432736} a^{4} + \frac{13030373701845726124254766353047}{78674065367696773999170450810912} a^{3} - \frac{51927266828682910732750739335963}{202304739516934561712152587799488} a^{2} - \frac{17670885847627819295223822965357}{177016647077317741498133514324552} a - \frac{213534265704413014623502510003}{10647617869312345353271188831552}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 91059497445400000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 24696 |
| The 45 conjugacy class representatives for t21n70 |
| Character table for t21n70 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | R | $21$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{7}$ | $21$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| $3$ | 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| $71$ | $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 1326319793 | Data not computed | ||||||